
EECS Capstone
Aerospace
Recorder for
Graphical
History
With Nvidia Jetson AGX Xavier

Anthony Kung, Caden Friesen, and Henry Chen
Revision 2: 28th January 2022

1. Overview

1.1. Executive Summary

The primary objective of our project is to create a graphical history (video) recorder for
large commercial and military drones. The goal for our project is to be able to save the data
from a GigE Vision camera and a USB3 thermal camera using the Nvidia Jetson AGX Xavier
platform to allow other people to review it later. This is to facilitate an aerial reconnaissance
mission where a large drone will be able to record aerial graphical data by taking multiple
images every second. Our system needs to record, store, organize, and self monitor data
collection to ensure whole hours of images can be taken without any errors. Our system is
robust to power failures and has variables saved in ways that allow easy continuation in data
from where the system left off when it lost power.

The system consists of multiple hardware components provided by Collins Aerospace:
the Single Board Computer Nvidia Jetson AGX Xavier, the GigE Vision camera Imperx C3210,
the USB Type C camera Flir Boson320, the power supply module V24C12T150BL with an
evaluation board, a PoE switch TP-Link TL-SG1005P, and finally a GigE Vision camera from Flir
which is regulated under ITAR regulations. One of the main goals of the project was to integrate
all of these pieces into one system. Our power supply module powers the Jetson as well as the
PoE switch, the PoE switch is powering the GigE Vision camera and the Jetson is powering the
USB-C camera. A user interface is attached to the Jetson for basic operations, including
recording time delays, a manual recording mode, a recording length setting, and saved
preferred settings. Our system includes a Primary Executable, or APE in short, that will manage
the entire software operations and runs upon system startup. The cameras take videos by
capturing each video frame as an individual image, this process is done at high speed which
allows for the conversion to video after. These images of video frames will be processed by the
Storage Block to be organized into an SSD storage medium onboard the Jetson.

1.2. Team Contacts, Communication Protocols, and Standards

Team contact information

Table 1.1: Team Roaster

Team Member Email Block

Henry Chen chenjunh@oregonstate.edu 1. Jetson Power Supply
2. Jetson GPIO

1

mailto:chenjunh@oregonstate.edu

Team Member Email Block

Anthony Kung kungc@oregonstate.edu 1. Primary Executable
2. GigE Camera

Caden
Friesen

frieseca@oregonstate.edu 1. USB Camera
2. Jetson Storage

Table 1.2: Team Role

Role Role description Role Owner

Chief Finance Officer Taking care of the budget,
make sure it is not
overspending. Ordering stuff
for the team.

Caden Friesen

Project Partner
Communicator

In charge of communication
between the team and the
project partner.

Anthony Kung

Team Meeting Coordinator Making a schedule for the
team meeting. Writing down
notes during the meeting and
making sure everyone is able
to attend the meeting.

Caden Friesen

Project Progress Video
Owner

In charge of editing the video
for the weekly report. And
make sure the video met the
requirements.

Anthony Kung

Communication preferences of our project partner

● We will communicate via email. All of our email addresses will be included in each email
so that all members can communicate and see all communication.

● We will use a google slides presentation to document progress, questions, and
challenges that our project partner can check in on at any time.

● Calls with our project partner can take place on Zoom and will only be scheduled as
needed and preferably early in the morning.

2

mailto:kungc@oregonstate.edu
mailto:kungc@oregonstate.edu
mailto:kungc@oregonstate.edu
mailto:frieseca@oregonstate.edu

● Our communication just within our group will be done mostly through discord.

Table 1.3: Team Communication Protocols and Standards

Topic Protocol Standard

Time Management and
Challenges

If a team member is running
behind or is stuck on a task
before a deadline, then they
should contact the group to
receive help on the task.

Work will be done by
deadlines unless reassessed
by the whole group.

Quality of Work To avoid a team member’s
work not being of good
quality, regular checkups of
their blocks and sharing of
work accomplished should be
maintained.

Work will be completed to a
professional standard that is
expected by the project
partner.

Division of Work As new assignments are
posted the team will meet to
determine how to split up
work equally among all
members.

Team members will contribute
an equal amount of work to
the project to the best of their
ability.

Decision-Making Team decisions should be
agreed on by the majority of
the team. Team members
should contribute and make
informed decisions. Team
members will make sure they
understand what is being
proposed and ask questions
before agreeing to or voting
on decisions.

Team members would
participate in team meetings
and contribute to the decision
meeting to the best of their
knowledge and the
information provided. Team
members will make sure they
understand what is being
proposed

Conflict Resolution In the event of a conflict, all
team members should
participate to resolve the
conflict by providing helpful
input. Should the conflict be
unable to be resolved by the
team, the team should
contact an external mediator
such as an instructor to

Team members would
communicate in a
professional way to express
concerns. Conflicts will not be
personal within the group and
be resolved methodically.

3

attempt to resolve the
conflict.

Communication Before new documents or
project groups are created it
will be discussed what is
available to each team
member to make sure all will
have access.

Communication will be
carried out in a way
accessible to all team
members.

1.3. Gap Analysis
This project exists to fill a need for a graphical data recorder for large drones using GigE

Vision and USB3 Vision industrial cameras. The project partner requires a system that is
capable of recording graphical data using the Jetson Single Board Computer and the 3 specified
cameras. Our project will fill this gap by integrating multiple system SDK into a single program
which allows the Jetson to manage all 3 cameras on the drone. The recorded graphical images
will be stored physically on an SSD for later viewing. Unfortunately, due to the sensitive nature
of our project, we do not have any specifics of the exact purpose of the project.

Since our system has to be self-sustainable and easily installable on the drone while
supporting 3 different cameras. We will need to create a modular design in both hardware and
software to allow this. We also need to make sure that the system can boot on power up and
run the necessary programs including APE without user interaction. And our programs should
be developed with the consideration of a power failure to ensure our Jetson does not get
impaired during abrupt disconnections and allow auto recovery upon power restoration.

From what we have learned from the project partner, this project intends to take aerial
footage in remote regions with a large jet-size drone. Our project will provide valuable data for
Collins and provide an understanding of how to interface multiple camera protocols on the
Jetson platform for their future implementation and product development. Collins Aerospace
specializes in creating camera systems for commercial and military aircraft, the result of this
project will be very helpful to the future development of Collins’ products.

4

1.4. Timeline/Proposed Timeline

The timeline of the project extends throughout three terms each being 10 weeks long beginning with problem definition, transitioning
into the preliminary design and system testing, and ending with the final presentation and documentation. Below is a proposed
timeline for the fall term along with a secondary timeline of the full 30-week project. Editing this document now after the first two
terms this timeline serves as a very good example of how things don’t always go according to an original plan.

5

1.5. References and File Link

1.5.1. References

[1] “GigE Vision,” Wikipedia, 03-Sep-2021. [Online]. Available:
https://en.wikipedia.org/wiki/GigE_Vision. [Accessed: 12-Mar-2022].

[2] “USB3 vision,” Wikipedia, 01-Sep-2021. [Online]. Available:
https://en.wikipedia.org/wiki/USB3_Vision. [Accessed: 12-Mar-2022].

1.5.2. File Links

N/A

1.6. Revision Table

3/12/2022 Anthony Kung
- Changed Executive Summary
- Changed Gap Analysis
- Added references

3/12/2022 Henry: edit the gap analysis

3/12/2022 Caden Friesen: Edited timeline piece. Reformatted section

3/6/2022 Anthony Kung
- Changed Executive Summary
- Updated Team Communication Standards & Protocol
- Changed Gap Analysis
- Removed old terms to avoid references to slavery in support of
GitHub initiative

12/3/2021 Aleksi Hieta: Added revised timeline

12/3/2021 Henry: edit section 1.1 and 1.2, added team role.

11/19/2021 Henry: Added section 1 and change it from the feedback

11/12/2021 Caden Friesen: Added a team standard and edited 1.3. Added more to 1.1

11/12/2021 Aleksi Hieta: Made edits to 1.1, 1.3, and added broad timeline

10/29/2021 Anthony Kung
- Incorporated instructor feedback
- Incorporated project partner feedback

6

mailto:kungc@oregonstate.edu
mailto:kungc@oregonstate.edu
mailto:kungc@oregonstate.edu
https://en.wikipedia.org/wiki/GigE_Vision
https://en.wikipedia.org/wiki/USB3_Vision

10/22/2021 Everyone: Edited sections 1.1 and 1.2

10/22/2021 Aleksi Hieta: Added Proposed Timeline

10/21/21 Henry: Added Executive Summary and Team Communication Protocols and
Standards

10/21/21 Caden Friesen: Added gap analysis, references, and revisions table sections

2. Requirements Impacts and Risks

2.1. Requirements

1. Project Partner Requirement: Ability to record and store camera stream for Boson320

Engineering Requirement: The Jetson will capture video frames from the Boson320 camera
and the video frames will be stored as image files at a 10FPS minimum in 320x256 pixel
images.

Verified By:

1. Connect the Boson320 via USB C port on the Jetson along with the Imperx C3210 via
the PoE switch.

2. Verify APE runs on startup
3. Set the recording time to 1 minute using the user interface.
4. View data recorded on the Solid State Drive and verify there are at least 600 photos.
5. Check that saved images are 320x256 pixel images.

2. Project Partner Requirement: Ability to acquire image from Imperx GigE Vision
Camera

Engineering Requirement: The Jetson will capture image data from the Imperx camera and
store it as an Imperx RAW image file with the original resolution of 3216 x 2208 pixels at up to
16 images per second.

Verified By:

1. Connect the camera to PoE switch

7

2. Connect Jetson to PoE switch
3. Power up Jetson board
4. Verify APE runs on startup
5. Verify images have been taken to /data/Imperx directory.

3. Project Partner Requirement: The device will store preferred settings to allow easy
resetting.

Engineering Requirement: The Jetson will store the previously set recording time and preset
delay time in a file. These should be able to be set with the user interface.

Verified By:

1. Powering on the Jetson
2. Configure the recording time and preset delay time to 60 seconds
3. Verify the configuration has been written to the file by checking the .txt files for the

previous record and previously.
4. Power down the Jetson
5. Powering up the Jetson again
6. Verify the configuration is correctly restored when pressing the set to the previous button

on the user interface.

4. Project Partner Requirement: The device will function electrically with what power is
available on an aircraft without the need for extra pieces.

Engineering Requirement: The power supply block will take an input voltage of 28V with a 5V
margin to produce a steady 12V supply for the Jetson.

Verified By:

1. Connect the DC voltage source to the input terminals of the Power Supply Unit.
2. Connect the PSU output wire to the NVIDIA Jetson.
3. Verify that Jetson runs the program and starts up with no noticeable abnormalities. This

means being able to run the program and record the files.
4. Monitor the operating input voltage to see if the device is able to handle the variety of

input voltage. The expected input from the aircraft is 28V DC. Vary the input voltage from
26V to 30V.

8

5. Project Partner Requirement: The system will have a GUI that provides functionality
for setting up the device for future recording sessions.

Engineering Requirement: The system will allow 9 out of 10 users to perform the following
functions: Manually starting/stopping recording, setting a preset delay for recording, setting a
preset recording length, and resetting to previous settings.

Verified By:

There will be four buttons: A menu button for switching between options, a select button for
performing actions, a plus button for adding, and a minus button for subtracting. This
step-by-step guide will not explain how to perform each action by each button press but will only
use the buttons above.

1. Connect the Boson320 to the NVIDIA Jetson with a USB C port.
2. Press the select button on the start/stop recording option. The status indicator on the

display should change to stop. Verify on the computer monitor that the recording has
stopped by no more files appearing on the solid-state drive (recording defaults to start on
boot).

3. Add 1 minute to the preset delay option make sure to press select on these
4. Add 2 minutes to the recording length option, then verify that the option can be moved

back down to 1 minute.
5. Press the select button on the start/stop recording option. The status indicator on the

display should change to waiting, and the display should begin counting down the preset
delay.

6. Once the preset delay reaches 0 the status should change to recording and this should
be verified by viewing files being added to the solid-state drive. At this point, the preset
recording length should begin counting down.

7. Verify that when the recording length reaches 0 the status changes to stopped.
8. Select the reset to the previous option. Verify that the one-minute recording length and

preset delay reappear on the display.

This process also needs to verify that users can use it. A small manual for the functions of
buttons will be made and given to participants along with the device.

1. Attach the Boson320 and Imperx camera to the NVIDIA Jetson with the USB C port and
PoE switch.

2. Set the delay time to 5 minutes and the record time to 0 minutes.
3. Run the Primary Executable allowing the cameras to record.

9

4. Hand the participant a list of small tasks they will pass if they are able to accomplish all
of these tasks without help.

a. Stop the recording
b. Change the delay to 1 minute.
c. Change the recording time to 2 minutes.
d. Resume the recording.
e. At any point after this return the system to previous settings.

5. This will be verified if 9/10 people can accomplish these tasks.

6. Project Partner Requirement: Video is stored on an SSD in an organized fashion.

Engineering Requirement: The system will output image files to an SSD that will be organized
by camera number.

Verified By:

1. Attach the Boson320 and Imperx camera to the NVIDIA Jetson with the USB C port and
PoE switch.

2. Run the Primary Executable allowing the cameras to record.
3. Stop the recording after 10 or more seconds
4. Check that files are stored in the folder on the solid state-drive named “CameraX” where

X is the number assigned in the primary executable included in the title (this number
should be verified during a verification test).

5. Check that both cameras are stored properly in different folders.
6. Check that none of the files are still stored on the local memory.
7. Run this test one more time with this variation:

a. Run the test with the folder for the camera deleted and verify this folder is created
on running.

7. Project Partner Requirement: Images saved will have a way to easily check what
images were taken at the same time.

Engineering Requirement: The system will output images with the timestamps on the file
name.

Verified By:

10

1. Attach the Boson320 and Imperx camera to the NVIDIA Jetson with the USB C port and
PoE switch.

2. Run the Primary Executable to record the cameras.
3. Stop the recording after one minute.
4. Check for the files stored in the Camera1 folder on the solid-state drive.
5. Verify that the files have a range of timestamps one minute long across all their names.

8. Project Partner Requirement: The system will be able to start recording when it gains
power.

Engineering Requirement: The system will operate without user intervention when power is
applied. If a preset delay or recording length was chosen this feature will continue from where it
left off 10 out of 10 times.

Verified By:

1. Attach the Boson320 to the NVIDIA Jetson with the USB C port.
2. Run the primary executable to record the camera.
3. Disconnect power from the NVIDIA Jetson.
4. Reconnect power to the NVIDIA Jetson.
5. Check that recording has begun again by viewing if new files are appearing in the

Camera1 folder.
6. Stop recording and create a preset delay of 1 minute, and a recording length of 1

minute.
7. Restart the system with this preset delay applied.
8. View on the display that the delay counts down from 60 to 30 seconds.
9. Repeat steps 3 and 4.
10. View on the display that the delay continues counting down from 30 seconds before it

begins recording. This can be verified like step 5.
11. View on the display that the preset recording length counts down from 60 to 30 seconds.
12. Repeat steps 3 and 4.
13. Verify that once the system resumes recording it records for only 30 more seconds.

11

2.2. Design Impact Statement

2.2.1. Introduction

Our project is to create a camera system for a large commercial and/or military drone
using industrial vision cameras. This project is created in collaboration with Collins Aerospace
and will be using the hardware provided by them. This includes the Nvidia Jetson AGX Xavier
platform as the controller of the system, GigE Vision cameras, and USB Vision cameras. Due to
the nature of the project, we do not know its exact purpose of this project. To the best of our
knowledge, this project will be used as an aerial reconnaissance system to survey the area in a
remote location. This Design Impact Assessment is to evaluate the public impact caused by the
development and deployment of the tool. By creating an impact assessment, project
stakeholders can be aware of any potential impact this project may bring upon completion and
the project design engineer will be able to look at the potential impact and include steps to
mitigate it if necessary. This protects the project and the public from any undesirable outcome
that can be preventable and foreseen.

The primary function of this project is to rapidly collect images on a drone using the
provided hardware and store it locally to be accessed later. The project will also be modular for
any expansion the end-user desires to expand the data being collected, for example, the ability
to collect data with additional cameras.

2.2.2. Public Health, Safety, and Welfare Impacts

Since the primary purpose of this project are to collect graphical data or images from our
industrial camera system, the impact of this project on public health, safety, and welfare is
limited. The product will be a monitoring system that does not impede aircraft operations.
However, since the device will be connected to an aircraft onboard power system, failure of the
Power Control Unit (PCU) or the power supply unit (PSU) of the project could result in the loss
of power to the aircraft. This will result in the loss of flight and the loss of aircraft, and thus, the
loss of human life.

An example of flight system power failure resulting in the loss of 229 human lives would
be Swissair Flight 111 [1]. The cause of this accident was believed to be a failure of the newly
installed in-flight entertainment system as stated "Investigators identified evidence of arcing in
the wiring of the in-flight entertainment network, but this did not trip the circuit breakers, which
were not designed to trip on arcing" [2]. This arcing caused by a short circuit resulted in a fire
mid-flight that destroyed the entire airplane rapidly before the pilots were able to land. To further
elaborate on this point, installing a new piece of equipment on an aircraft may compromise the
security of the aircraft. If wrongly installed, the new equipment could disrupt the power delivery
system of the aircraft and cause power failures just like this.

The device itself can also pose a hazard such as exploding and damaging the aircraft.
The FAA has a long list of aviation accidents caused by smoke, fire, extreme heat, or explosion
involving lithium-ion batteries [3]. An example would be a recent laptop explosion onboard a

12

United Airlines flight in February 2020 [4]. Fortunately, no life was lost due to the accident,
however, it did cause the aircraft to make an emergency landing. The Nvidia Jetson AGX Xavier
can get very hot at times if there isn’t a consideration of temperature control, the hot heat sink
could come in contact with flammable material and cause harm.

If built inappropriately, our project may become a hazardous material, a catastrophe
waiting to happen. To mitigate these potential hazards and risks, our project has to follow strict
standards set by industries and government agencies. This includes adapting the IEEE 1156.1
standard [5] on microcomputers which has a special section for avionics, and the MIL-STD-810
military standard [6] which includes test methods for various scenarios of potential risks. We
would also need to protect our system from any damages which could then cause harm to the
aircraft, the Ingress Protection code will provide the necessary requirements to protect our
device from water damage as well as dust that could spark a fire. The IEC 62262 standard [7]
would ensure our device is rugged and durable enough to withstand the worst-case scenario of
the aircraft such as turbulence or drastic maneuvers. At this point, there are no other
recommendations that could effectively mitigate this risk, this is the same method used in the
industries.

2.2.3. Cultural and Social Impacts

In this project, the Nvidia Jetson contains computer chips, but many chip companies
treat people unfairly and give workers bad working conditions. Some workers do not even have
enough protection to perform their jobs safely. Many companies provide some bad working
conditions and environments, those companies also often pay less money to those workers.
The environment can get lots of workers sick and not pay for their medical bills. The electronic
workers in India show us how huge of an impact this is to them. Sheela is one of the thousands
of invisible workers who toil night and day in India’s electronics sweatshops. These sweatshops
do not pay nearly enough for what conditions the workers are put through and how much money
the companies make. “The industry’s total production figure of US$21 billion (in both hardware
and software) for the 2002– 2003 fiscal year did not mean much to her or to the many other
thousands of workers, who find it difficult to make ends meet.”[8]. This shows they are paid way
less than other people in the world. They work hard, they mostly work more than 8 hours a day.
And then no one takes care of their health.

What we can do for our project is responsibly buy cameras and other stuff from
companies who treat their workers well, so that other companies will start to treat the workers
better because they want to sell their products. We can also help spread the word about this
injustice outside our project and try to make a difference.

2.2.4. Environmental Impacts

For the environmental impacts, our project is helping the company to understand how to
use Nvidia to collect the data for planes and drones. This will involve lots of aircraft. Aircraft
today are powered by liquid aviation fuel, made mostly from fossil fuel sources. Fossil fuel has
been a big problem for the world since the 1900s. Extra carbon dioxide in the atmosphere
increases the greenhouse effect. More thermal energy is trapped by the atmosphere, causing

13

the planet to become warmer than it would be naturally. This increase in the Earth's temperature
is called global warming. Our planes are still using fuel now, there are no electric planes yet.
“Fossil fuel consumption-based economic development brings the tricky issue that the
over-emitted CO2 emissions pose a threat to people’s health and lives (Gong et al. 2017). Nine
billion tons of energy-related CO2 emissions, accounting for 60% of the global output, were
produced by China in 2016; however, in 1990, China’s CO2 emissions only accounted for 5% of
the global output (Gu et al. 2019). According to the China Energy Outlook: World Energy
Outlook 2017 (IEA 2018), China was once again the largest contributor to global CO2
emissions.”[9] We can see the C02 emissions from burning fuel are very huge, this makes a lot
of impact on the environment. C02 emissions cause global warming and it has a bad effect on
the environment of the earth and humans.

For this problem, the key point to solve is to reduce emissions. All we need to do is meet
the project requirements. Once our project is working, this will help Collins more efficiently test
their cameras, and this will speed up the testing and reduce the number of flights they take. This
will reduce lots of emissions from aircrafts in the process.

2.2.5. Economic Factors

Economically this product should help Collins Aerospace provide better equipment in the
future. There is a lot to be said for planes and how important they are in our world’s
infrastructure. Every year 6.8 trillion dollars of cargo is shipped by air. That is 35% of
internationally traded goods by value [10]. A device that allows Collins to better check and test
their camera systems could be a step in the right direction towards some major future
developments. As a company like Collins develops a better camera system it is possible that the
world could leap closer to self-flying planes. Self-flying planes would be very major additions to
the world’s shipping power. This year Dynamic Aviation released a plane along these lines that
are being tested for package delivery. It is estimated that over the life of one self-flying plane a
shipping company could save 6 million dollars in costs [11]. This would help bring down shipping
costs for everyone, without the need for trained pilots in every vehicle. Many more planes would
be allowed to ship products at one time. This would cause a negative side effect as well though
as it would remove some jobs from the market so the cost and benefit would need to be
weighed against each other. It is unlikely that self-flying planes would eliminate all need for
pilots so it is likely it would be a general benefit. This is just one example of the type of
developments that could be made using our project. Our project really opens the door to speed
up the pace of Collins’ developments which could have a great impact on the economy.

2.2.6. Conclusion

In conclusion, although our project is relatively passive and has no physical output or
interaction, and also has no commercial interests and public end-user, there is still some level of
risk involved. Some of these risks can be potentially deadly or damaging to the aircraft.

Proper precaution in designing and implementing this system is required to ensure that it
does not impact aircraft operations nor does it cause any harm. These problems often are

14

mitigatable, take the avionic hazards, for example, there are standards to follow which would
help in mitigation. However, some such as greenhouse gas emissions from power consumption
are difficult to mitigate as the power would be coming outside of our system and out of our
control.

Based on the impacts predicted in this assessment, the following mitigation methods are
recommended to be included in the design and development of this project:

● Follow the regulatory standards for ensuring avionics are safe and do not cause harm to
the aircraft itself. The standards include IEEE 1156.1 [5], MIL-STD-810 [6], IP, IEC 62262
[7], and if possible, obtaining an FAA certification for airborne devices [12].

● Ensure the security of data transfer by encrypting transmission with TLS certificates and
being in compliance with PCI DSS v3.2 [13] security standards.

● Employ renewable energy where possible and select carbon-neutral cloud service
providers.

● Take necessary ESD protection measures such as wearing ESD protection wristband
[14], using ESD protection pads, and including ESD protection circuit in the design [15].

● Ensure the device is rugged and protected from external environmental factors such as
vibrations and turbulence.

15

2.3. Risks

Risk
ID

Risk
Description

Risk
Category

Risk
Probability

Risk
Impact

Performance
Indicator

Responsible Party Action Plan

R1 Falling
behind
schedule on
tasks

Timeline Medium High Deadlines met The whole team Discuss timetables regularly
and reduce delays.

R2 Our product
must be able
to hook up to
a drone of a
project
partner
specified
power level.

Technical Low if
mitigated

High In-person tests are
smooth

Henry Discuss with Carlo exactly
what this will be tested on to
avoid miscommunication.

R3 Our product
must be
verifiable
without a
drone
powering it.

Timeline Medium Medium Our device can
attach to a camera
system on the
ground.

Anthony Has an imitation power device
to retain verification methods.

R4 Different
assigned
portions of
the project
are not

Technical Low Medium Individual block
verifications are
smooth and on time

Caden Check in with teammates’
progress to reduce errors.

16

operating as
intended.

R5 Vendor
Delays

Timeline Medium Medium Hardware is not
available to test with

Aleksi Order parts early to avoid
shortages or delays.

R6 Our product
does not
combine well
within the
team
members

Technical Medium High Each block is
connecting according
to specified
interfaces

Whole team Discuss and meet with the
team to reduce conflicts,
communicate regularly.

R7 Power supply
does not
supply the
right current
or voltage to
the system

Technical Medium High Power supply
supplies the right
amount of voltage
and current

Henry Testing it extensively to avoid
the wrong voltage or current
happening in a full system test
or full system run.

R8 Materials are
too
expensive

Cost Medium High Price change or
getting sponsor

Whole team Reduce costs with alternative
components that are lower in
cost.

17

2.4. References and File Link

2.4.1. References

[1] “Swissair Flight 111,” Wikipedia, 28-Oct-2021. [Online]. Available:
https://en.wikipedia.org/wiki/Swissair_Flight_111. [Accessed: 28-Oct-2021].

[2] “Swissair Flight 111,” Wikipedia, 28-Oct-2021. [Online]. Available:
https://en.wikipedia.org/wiki/Swissair_Flight_111#Probable_cause. [Accessed: 28-Oct-2021].

[3] “Battery Incident Chart - Federal Aviation Administration.” [Online]. Available:
https://www.faa.gov/hazmat/resources/lithium_batteries/media/Battery_incident_chart.pdf.
[Accessed: 28-Oct-2021].

[4] D. Jones, “A passenger's battery charger exploded on a united flight, forcing an emergency
landing,” The Washington Post, 27-Feb-2020. [Online]. Available:
https://www.washingtonpost.com/travel/2020/02/27/passengers-laptop-battery-exploded-united-f
light-forcing-an-emergency-landing/. [Accessed: 28-Oct-2021].

[5] “IEEE 1156.1-1993 - IEEE standard microcomputer environmental specifications for
computer modules,” IEEE SA - The IEEE Standards Association - Home, 17-Jun-1993. [Online].
Available: https://standards.ieee.org/standard/1156_1-1993.html. [Accessed: 28-Oct-2021].

[6] “MIL-STD-810,” Wikipedia, 18-Oct-2021. [Online]. Available:
https://en.wikipedia.org/wiki/MIL-STD-810. [Accessed: 28-Oct-2021].

[7] “IEC 62262,” Wikipedia, 18-Oct-2021. [Online]. Available:
https://en.wikipedia.org/wiki/IEC_62262. [Accessed: 28-Oct-2021].

[8] Smith, Ted, David Sonnenfeld, and David Pellow. Challenging the Chip. Philadelphia: Temple
UP, 2008. Web.

[9] Gu, Wei, Di Liu, Chen Wang, Shufen Dai, and Donghui Zhang. "Direct and Indirect Impacts
of High-tech Industry Development on CO2 Emissions: Empirical Evidence from China."
Environmental Science and Pollution Research International 27.21 (2020): 27093-7110. Web.

[10] Person, “Air Cargo Carriers Battle competition from seas, passenger planes,” Reuters,
03-Jun-2014. [Online]. Available:
https://www.reuters.com/article/airlines-iata-cargo/air-cargo-carriers-battle-competition-from-sea
s-passenger-planes-idUSL6N0OK1BY20140603. [Accessed: 29-Oct-2021].

18

https://en.wikipedia.org/wiki/Swissair_Flight_111
https://en.wikipedia.org/wiki/Swissair_Flight_111#Probable_cause
https://www.faa.gov/hazmat/resources/lithium_batteries/media/Battery_incident_chart.pdf
https://www.washingtonpost.com/travel/2020/02/27/passengers-laptop-battery-exploded-united-flight-forcing-an-emergency-landing/
https://www.washingtonpost.com/travel/2020/02/27/passengers-laptop-battery-exploded-united-flight-forcing-an-emergency-landing/
https://standards.ieee.org/standard/1156_1-1993.html
https://en.wikipedia.org/wiki/MIL-STD-810
https://en.wikipedia.org/wiki/IEC_62262
https://www.reuters.com/article/airlines-iata-cargo/air-cargo-carriers-battle-competition-from-seas-passenger-planes-idUSL6N0OK1BY20140603
https://www.reuters.com/article/airlines-iata-cargo/air-cargo-carriers-battle-competition-from-seas-passenger-planes-idUSL6N0OK1BY20140603

[11] S. Lekach, “Self-flying planes could transport passengers one day-but first, packages,”
Mashable, 24-Jul-2021. [Online]. Available: https://mashable.com/article/self-flying-airplanes.
[Accessed: 29-Oct-2021].

[12] “System-leve ESD protection guide (rev. C) - ti.com,” Texas Instruments. [Online]. Available:
https://www.ti.com/lit/sg/sszb130c/sszb130c.pdf. [Accessed: 05-Dec-2021].

[13] “API requester TLS client authentication to a restful API endpoint,” TLS client authentication
to a RESTful API endpoint. [Online]. Available:
https://www.ibm.com/docs/en/zosconnect/3.0?topic=options-tls-client-authentication-restful-api-
endpoint. [Accessed: 28-Oct-2021].

[14] “Electrostatic discharge,” Wikipedia, 15-Nov-2021. [Online]. Available:
https://en.wikipedia.org/wiki/Electrostatic_discharge. [Accessed: 05-Dec-2021].

[15] “Antistatic device,” Wikipedia, 22-Sep-2021. [Online]. Available:
https://en.wikipedia.org/wiki/Antistatic_device. [Accessed: 05-Dec-2021].

2.4.2. File Links

N/A

2.5. Revision Table

5/6/2022 Henry: Update each section in the section 2.2

5/6/2022 Anthony Kung
- Added Section 2.2.1
- Added Section 2.2.2
- Added Section 2.2.6
- Added References Section 2.4.1

4/22/2022 Anthony Kung
- Updated Requirement 2.3
- Added requirement and verification steps

3/13/2022 Caden Friesen: Edited requirements 1 and 7 verification steps

3/12/2022 Anthony Kung
- Updated Section 2 Requirements

3/12/2022 Caden Friesen: Reformatted 2.3 Removed risk 9. Edited risk 2 and 3.

19

mailto:kungc@oregonstate.edu
mailto:kungc@oregonstate.edu
mailto:kungc@oregonstate.edu
https://mashable.com/article/self-flying-airplanes
https://www.ti.com/lit/sg/sszb130c/sszb130c.pdf
https://www.ibm.com/docs/en/zosconnect/3.0?topic=options-tls-client-authentication-restful-api-endpoint
https://www.ibm.com/docs/en/zosconnect/3.0?topic=options-tls-client-authentication-restful-api-endpoint
https://en.wikipedia.org/wiki/Electrostatic_discharge
https://en.wikipedia.org/wiki/Antistatic_device

3/6/2022 Caden Friesen: Completely overhauled or removed all requirements.
Added new requirements to reach 8.

3/6/2022 Anthony Kung
- Updated Section 2 Requirements

1/29/2022 Caden Friesen: Wrote new project requirements.

12/3/21 Caden: Made edits to risk table. Overhauled and added content to all
requirements

12/3/21 Aleksi: Additions to risk table

12/3/21 Henry: Additions to risk table

11/19/21 Caden Friesen: Added titles to requirements and edited some language

11/12/21 Caden Friesen: Reformatted 2.3 to the landscape. Added project partner
requirements, one more requirement, and edited all eight requirements.
Added responsible parties to 2.3. Added citations to requirements

10/29/21 Henry Chen: added to section 2.3

10/29/21 Anthony Kung
- Added verification methods to 2.1
- Added additional requirements to 2.1

10/29/21 Aleksi Hieta: Added to 2.1 and 2.3

10/28/21 Caden Friesen: Added all sections. Started work on 2.1 and 2.3

20

mailto:kungc@oregonstate.edu
mailto:kungc@oregonstate.edu

3. Top-Level Architecture

3.1. Block Diagram

Figure 3.1: Block diagram for the overall project

21

Figure 3.2: Black box diagram of the system

3.2. Block Descriptions

GigE Camera Research and Code

Block Champion: Anthony Kung

The GigE code block is responsible for interfacing with the GigE Cameras via an
Ethernet connection. This camera operates at high speed taking advantage of Gigabit Ethernet
and Power over Ethernet. The number of GigE cameras connected can vary, this means that
this block has to be able to handle multiple cameras at once using forks. The block will take
images from the two GigE cameras aiming for at least 15FPS on each. This block will also need
to report the location of where the recorded files are, and the unique identifier for each camera
to the Primary Executable. The way that this block would work is that when the Primary
Executable calls its function it connects to the cameras and starts getting image streams from
them. The Primary Executable will then control the recording by setting up a time to start and
stop recording.

USB Camera Research and Code

Block Champion: Caden Friesen

The USB Camera block will work with a Boson320 Flir camera to record image streams.
This camera will use a USB type C connection. These streams will be recorded at a minimum of
10FPS and stored on the local memory to be moved and renamed by the storage block. This

22

block will be the code that performs all the above actions, but will be set up as a function so that
it can be called upon by the primary executable.

Primary Executable

Block Champion: Anthony Kung

The Primary Executable is a Linux service that starts when the Nvidia Jetson block is
powered on. This program will start recording protocols immediately but look to the GPIO input
for a preset delay or to stop recording. It will drive many other parts of the project blocks, these
include using the camera scripts to detect and record image streams, and running the storage
script to move recorded images to a solid state drive.

Storage Code

Block Champion: Caden Friesen

The Storage Code block will be focused on moving files that are stored on local memory
to a solid-state drive with far more available space. It will be made in a way where it could be
called by the primary executable as a function. It will need to take in file paths, timestamps, and
camera numbers so that it can move image files from local memory and rename and store them
in an organized function. It will make folders for each camera so the images will be stored
separately from each other to avoid confusion.

Control System

Block Champion: Henry Chen

This block will be in charge of all user input to the device and to the primary executable.
The block will allow the user to start and stop recording at will as well as set a time delay before
recording or a time that the device will record for. It will contain a display that shows whether it is
currently recording or stopped as well as the current time on the timers. The code for this block
will be covered by the primary executable while the hardware and a PCB will be the
responsibility of this block. Different buttons will contain different functions, there are four
buttons total.

Power Supply

Block Champion: Henry Chen

The power supply block will be in charge of using the 100 Watts 28 Volts Dc power
provided by the drone and transforming it into the 10-12 Volt 5.5-7 Ampere requirement for the
NVIDIA Jetson AGX Xavier that will be the core of the system.

23

3.3. Interface Definitions

Table 3.1: Interface Definitions List

Name Properties

otsd_usb_cmr_cd_comm
● Other: The camera can be moved at least one foot

in each direction (up, down, left, right, forward,
back) without a disconnection

● Other: Flir Boson320 camera will be connected as
the input device

● Protocol: USB Type C

otsd_pwr_spply_dcpwr
● Inominal: 1A
● Ipeak: 1.5A
● Vmax: 28V
● Vmin: 26V

otsd_gg_cmr_cd_dcpwr
● Inominal: 1A
● Ipeak: 1.5A
● Vmax: 28V
● Vmin: 26V

otsd_gg_cmr_cd_comm
● Other: Can handle 1 or 2 GigE cameras with the

same level of functionality
● Other: Cameras can be moved one foot in each

direction without a disconnection
● Protocol: GigE

otsd_cntrl_usrin
● Other: Buttons press down greater than or equal to

0.1cm distance
● Other: Buttons have flat non-extruding top
● Type: Four Push Buttons are Present

24

usb_cmr_cd_strg_data
● Datarate: At least 10 images will be saved per

second from the camera
● Messages: Files saved will be images with

320x256 pixel resolution
● Protocol: Data will be saved on the eMMC

pwr_spply_prmry_xctbl_dcpwr
● Inominal: 5.5A
● Ipeak: 7A
● Vmax: 12V
● Vmin: 10V

gg_cmr_cd_strg_data
● Datarate: Files produced are at least 15FPS
● Messages: Each frame will be saved as Imperx

RAW image file
● Protocol: Data will be saved on the eMMC

prmry_xctbl_usb_cmr_cd_data
● Other: Ability to set variable with camera number

for storage function. (Boson320 designated camera
1)

● Other: Ability to call storage function on filepath of
the saved images.

● Protocol: Script for running the camera can be
called by a program using a
system("./[scriptname]") execution

prmry_xctbl_gg_cmr_cd_data
● Other: Ability to return number of connected

devices with unique identifier
● Other: Ability to return filepath for saved data
● Protocol: Function Call

prmry_xctbl_strg_data
● Messages: File name (char array), camera number

(int), timestamp (char array)
● Other: Ability to provide status of if it is still in the

process of storing data or is waiting
● Protocol: Function Call

25

prmry_xctbl_cntrl_dcpwr
● Inominal: 60mA
● Ipeak: 70mA
● Vmax: 3.35V
● Vmin: 3.25V

strg_otsd_data
● Datarate: Able to transfer 12 Gigabytes in under 5

minutes. Spread across 6 files.
● Other: Able to detect if files for storage are already

present and create them if not
● Other: Data can be moved to a USB using a

monitor and can be played back on another
computer without corruption. Shutting the device off
while recording or in storage mode will result in one
corrupted file which does not count against this
property

cntrl_prmry_xctbl_asig
● Other: 60-90 mA current (Button Active)
● Other: code that can read button inputs through

GPIO pins
● Vrange: 3-3.3 volts (Button Active)

3.4. References and File Link

3.4.1. References

[1]Kangalow, W. Lucetti, Ícaro, Sam, Idella, Sagi, J, L. dae hee, David, J. Daniel, J. Daniel,
Eirik, Arrakisun, Simran, Tegwyn☠Twmfatt, L. Steinbach, Sai, and T. T. Twmfatt, “GPIO
interfacing – Nvidia Jetson TX1,” JetsonHacks, 02-Nov-2019. [Online]. Available:
https://jetsonhacks.com/2015/12/29/gpio-interfacing-nvidia-jetson-tx1/. [Accessed:
21-Apr-2022].

3.4.2. File Links

N/A

26

3.5. Revision Table

4/21/2022 Henry Chen: edit the block descriptions and add some references link

3/12/2022 Caden Friesen: Wrote all block descriptions in section 3.2. Added interface
table in 3.3. Added Black Box diagram to 3.1

3/6/2022 Anthony Kung
- Updated Section 3

1/27/2022 Caden Friesen: Wrote new block description general requirements.

1/5/22 Henry: added update on the power supply

12/3/21 Caden Friesen: Added updated block diagram and black box diagram.
Added new interface otsd_mbl_pplctn_usrin. Minor edits to block
descriptions.

12/3/21 Aleksi Hieta: Interface Revision

11/19/21 :Anthony Kung
- Block Diagram
- Interface Definition

11/19/21 Caden: Added block descriptions and part of interface table. Worked on
block diagram

11/19/21 Henry: add stuff in section 3

11/19/21 Aleksi Hieta: 3.1 Block Diagram, part of 3.2

4. Block Validations

4.1. Primary Executable

4.1.1. Description

Our project is to create a video recorder using Nvidia Jetson Development Board. The
Automated Primary Executable Block (APE) also known as Master Script is a Linux systemd
service that starts when the Nvidia Jetson block is powered on. This program will look for GPIO
input for control and start recording after a set delay as well as controlling other parts of the
project blocks, these include using the camera scripts to detect and record videos, using the
storage script to move recorded video to another partition. The APE also controls the user
interface which handles the user input (push buttons) and user output (E-Ink e-Paper Display).

27

mailto:anthonykung@hailiga.org
mailto:anthonykung9@gmail.com

4.1.2. Design

Figure 4.1.2.1: Primary Executable Block Illustration

Figure 4.1.2.1 shows the Primary Executable Block’s block diagram, which includes 8 interfaces
with 26 total properties. The APE will be running as a system service on power-up, it leverages
Jetson’s automation headers [1] to autoboot when power is supplied. Once the power is
supplied, APE will start counting down a delay set beforehand. When the timer hits 0, APE will
start the recording process with the help of the two camera blocks and the storage block. Once
the recording started, any interruption to the recording process, e.g. crashes or power failure,
will resume the recording process immediately. This is done by writing a file containing a delay,
the delay is then decremented and written to another counter file.

4.1.3. General Validation

Our entire project is to be developed in C++ to take advantage of many camera library and
Jetson built-in library which supports C++. By using a unified language for all processes, we can
ensure that all of our programs are compatible with each other. And C++ is great for
multithreading [2] which allows us to run multiple instances of a function simultienously.
Although Python and Node.js also support multithreading as well as the Jetson libraries, the
Aravis GigE library [3] would only support C++ and thus, C++ would be a better option than
Python in this case. By using a counter, we can create a fully automated process that can still
skip the unnecessary part of the recording (e.g. taking off) while requiring no user interaction of
any sort during operation. This timer counter will be set as part of the preflight check of the
drone, no user interaction is required or possible once the drone are started up. Having a single

28

primary program to manage multiple parts of the block would helps keeping everything in sync
as well as facilitating communication between services. To best reduce the circuitries needed for
this project, GPIO will be managed by Jetson itself, no additional power supply nor external HAT
system is required, Jetson even comes with its own level shifter as well.

4.1.4. Interface Validation

pwr_spply_mstr_scrpt_dcpwr : Input

Power Supply to Master Script (APE) DC Power Input

Interface
Property

Why is this interface this
value?

Why do you know that your design
details for this block above meet or

exceed each property?

Inominal: 3.5A We have determined that we
need at least 30 W of power
for the Jetson for maximum
performance [4].

The minimum of this setup would provide
at least 35 W.

Ipeak: 4.0A This is the maximum voltage
we will supply to Jetson board
to provide sufficient power for
the board.

The Jetson has an absolute maximum of
over 200 Watt using the MAXN power
mode [4]. This current is way less than the
absolute max that Jetson can handle while
still providing more than enough power for
the 8 ARM cores.

Vmax: 19V This is the voltage we are
targeting for our Jetson to
provide sufficient power for
the board.

The power supply that comes with the
Jetson provides 19V, the power
specification of Jetson supports 19V and it
would be the maximum voltage we are
willing to go for best module operating
efficiency [5].

Vmin: 10V The Jetson requires at least
9V to be in normal operation
mode, anything below 9V will
result in the Jetson entering
low-power mode [5].

The power supply minimum is at least 1V
above the absolute minimum.

mstr_scrpt_usb_cmr_cd_data : Output

29

Master Script (APE) to USB Camera Code Data Output

Interface
Property

Why is this interface this
value?

Why do you know that your design details
for this block above meet or exceed each

property?

Other: Ability
to return
filepath for
saved data

A file path is required for
the Storage block
processes.

The APE is able to receive strings returned
from a C++ function. This is how the filepath
will be sent from the camera block.

Other: Ability
to return
number of
connected
devices with
unique
identifier

The number of connected
devices are needed to
determine the number of
threads to create.

The APE is able to receive integers returned
from a C++ function. This is how the numbe of
cameras will be sent from the camera block.

Protocol:
Function Call

The APE will call a function
within the camera block to
obtain these informations.

The APE is able to call any C or C++ functions
as it is a C++ program. All codes are equipped
with a header file to be included in the APE
with the necessary extern variables.

mstr_scrpt_gg_cmr_cd_data : Output

Master Script (APE) to GigE Camera Code Data Output

Interface
Property

Why is this interface this
value?

Why do you know that your design
details for this block above meet or

exceed each property?

Other: Ability to
return filepath
for saved data

A file path is required for the
Storage block processes.

The APE is able to receive strings returned
from a C++ function. This is how the
filepath will be sent from the camera block.

Other: Ability to
return number
of connected
devices with
unique identifier

The number of connected
devices are needed to
determine the number of
threads to create.

The APE is able to receive integers
returned from a C++ function. This is how
the numbe of cameras will be sent from
the camera block.

30

Protocol:
Function Call

The APE will call a function
within the camera block to
obtain these pieces of
information.

The APE is able to call any C or C++
functions as it is a C++ program. All codes
are equipped with a header file to be
included in the APE with the necessary
extern variables.

mstr_scrpt_strg_data : Output

Master Script (APE) to Storage Data Output

Interface
Property

Why is this interface this
value?

Why do you know that your design
details for this block above meet or

exceed each property?

Messages:
File name
(char array),
camera
number (int),
timestamp
(char array)

This is to provide the
necessary information for the
Storage block to function.

The file name will be obtained by the APE
from the camera blocks. The camera blocks
will return the filename to APE once the file
has been saved, this is managed by thread
processes.

Other: Ability
to provide
status of if it is
still in the
process of
storing data or
is waiting

This is necessary to ensure
the APE do not quit
unexpectedly during file
storing.

The APE will wait for all thread processes to
exit before turning itself off.

Protocol:
Function Call

The APE will be providing
these information via
functions as parameters.

The APE is able to call any C or C++
functions as it is a C++ program. All codes
are equipped with a header file to be
included in the APE with the necessary
extern variables.

mstr_scrpt_cntrl_dcpwr : Output

Master Script (APE) to Control (GPIO) DC Power

31

Interface
Property

Why is this interface this
value?

Why do you know that your design
details for this block above meet or

exceed each property?

Inominal: 60mA This is the estimated current
required by the GPIO block to
operate.

The Jetson is more than capable to supply
1A of current if needed [1], this is way less
than the maximum.

Ipeak: 70mA This is the estimated
maximum current required by
the GPIO block to operate.

The Jetson is more than capable to supply
1A of current if needed [1], this is way less
than the maximum.

Vmax: 3.35V This is the maximum voltage
the GPIO block can handle.

Jetson is equipped with a 3.3V power
supply pin [1].

Vmin: 3.25V This is the minimum voltage
the GPIO block can handle.

Jetson is equipped with a 3.3V power
supply pin [1].

cntrl_mstr_scrpt_asig : Input

Control (GPIO) to Master Script (APE) Analog Signal Input

Interface
Property

Why is this interface this
value?

Why do you know that your design
details for this block above meet or

exceed each property?

Other: code that
can read button
inputs through
GPIO pins

The Jetson GPIO will be
checking the signal received
from the GPIO pin from button
press.

The Jetson GPIO pins are compatible with
Raspberry Pi GPIO and thus is able to be
programmed in C++ easily, in Python and
even Node.js.

Other: 60-90
mA current
(Button Active)

This is the current that the
button would likely generate.

Jetson is more than capable to accept this
current on specific pins [1].

Vrange: 3-3.3
volts (Button
Active)

This is the voltage that the
button might supply to the
Jetson.

Jetson is more than capable to accept up
to 5V on specific pins [1].

p_njctr_mstr_scrpt_comm : Input

32

PoE Injector to Master Script Communication Input

Interface
Property

Why is this interface this
value?

Why do you know that your design
details for this block above meet or

exceed each property?

Other: Parse
input from
multiple
cameras

The PoE switch is needed to
breakout the single Ethernet
port on Jetson to support
multiple cameras.

Our Jetson is setup in a way to accept up
to 2^16 unique IP addresses, which would
be capable of accepting more cameras
than a PoE switch can provide.

Protocol: GigE This is the protocol that the
camera is going to use.

The Aravis vision library [3] is specifically
designed in a way to work with GigE
cameras.

Message: Video
Stream

The cameras will encode the
video stream in video format.

The Aravis visionlibrary [3] is capable of
decoding various video format including
Bayer colored format, Mono black/white
format as well as some other popular
video format.

4.1.5. Verification Process

The verification plan for this block would simply be verifying that the APE is able to perform the
require actions. The APE comes with a thermal regulation function that would control the
temperature of the Jetson board. This thermal regulation system is created in the same way as
the camera blocks and the GPIO blocks would be created. The thermal regulation functions will
be called as a thread and the temperature is constantly measured and reported. By checking if
the fan on the Jetson is operational, we can tell the multithreading workflow are operating
normally.

1. Power up Jetson
2. Verify APE started and running by checking the GPIO output for e-Paper select line
3. Verify APE timer is operational by checking the timer tracking file on Jetson
4. Verify APE able to create threads by checking thermal regulation system
5. Verify APE is able to call external functions by checking the thermal regulation system
6. Verify Jetson is able to supply the required power by measuring the GPIO pins
7. Verify Jetson is able to received the supply power by using an external power supply

33

4.1.6. References and File Link

4.1.6.1. References

[1] NVIDIA Jetson AGX Xavier Developer Kit Carrier Board Specification,
https://developer.nvidia.com/embedded/dlc/Jetson_AGX_Xavier_Developer_Kit_Carrier_Board_
Specification

[2] C++ Multithreading, https://www.tutorialspoint.com/cplusplus/cpp_multithreading.htm

[3] Aravis vision library, https://github.com/AravisProject/aravis

[4] Power Management for Jetson Xavier NX and Jetson AGX Xavier Series Devices,
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20D
evelopment%20Guide/power_management_jetson_xavier.html

[5] Jetson AGX Xavier Series Thermal Design Guide,
https://developer.nvidia.com/embedded/dlc/jetson-agx-xavier-series-thermal-design-guid

4.1.6.2. File Link

The project repository lives on GitHub at https://github.com/Optical-Interface and all files related
to the project will be available on the repository. Note that not all files will be publicly available or
if any file would be publicly available. These files are also available on request by contacting the
project group at capstone@anth.dev.

4.1.7. Revision Table

Name Time Description

Anthony Kung 2/19/2022 Updated Primary Executable Block Validation

Anthony Kung 2/4/2022 Created Primary Executable Block Validation

34

mailto:kungc@oregonstate.edu
mailto:kungc@oregonstate.edu
https://developer.nvidia.com/embedded/dlc/Jetson_AGX_Xavier_Developer_Kit_Carrier_Board_Specification
https://developer.nvidia.com/embedded/dlc/Jetson_AGX_Xavier_Developer_Kit_Carrier_Board_Specification
https://www.tutorialspoint.com/cplusplus/cpp_multithreading.htm
https://github.com/AravisProject/aravis
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html
https://developer.nvidia.com/embedded/dlc/jetson-agx-xavier-series-thermal-design-guid
https://github.com/Optical-Interface
mailto:capstone@anth.dev

4.2. GigE Camera Block

4.2.1. Description

The GigE code block is responsible for interfacing with the GigE Camera via an Ethernet
connection. This camera operates at high seep taking advantage of Gigabit Ethernet and Power
over Ethernet. The number of GigE cameras connected can vary, this means that this block has
to be able to handle multiple cameras at once using forks. This block would also need to report
the number of connected devices, the location of where the recorded file is, and the unique
identifier for each camera to the master script. The way that this block would work is that when
the master script would call its function and it looks for the connected Ethernet devices using
Linux native services, connect to these devices, and starts getting video streams from it. The
function will then return a ready message for the master script letting it know the camera is
ready for recording. The master script will then control the recording by setting up a time to start
and stop recording.

4.2.2. Design

Figure 4.2.2.1: GigE Camera Block Illustration

Figure 4.2.2.1 shows the operation flow of the GigE Camera Block. The GigE Camera Block is a
code block consisting of codes for the APE Primary Executable (Master Script) to use as an
external library. The primary goal for this block is to provide the ability to detect cameras,
connect to cameras, start recording and save the recording.

35

During setup, the APE will call a function from this block to get the number of connected
cameras and if any cameras were unable to connect. It will then pass a timestamp of when to
stop recording, this is to synchronize the recording time for all cameras from USB to GigE and
when a recording was started midway.

Pseudo Code as follow:

function GetCameraStats() {
if (EthernetPort == InUse) {

let DevicesDetected = ScanForDevicesOnPort();
let CameraObjectsArray = [{}];
for (i = 0; i < DevicesDetected; i++) {

let CameraObject = {}; // Initialize Camera Object
try {

CameraObject = {
id: GetDeviceID(),
type: "GigE",
status: "Connected",
device: ConnectToDevice()

}
}
catch (error) {

error.log(error);
CameraObject = {

id: GetDeviceID(),
type: "GigE",
status: "Error"

}
}
CameraObjectsArray.push(CameraObject);

}
// Return Array which indicate number of cameras connected

and camera status
return CameraObjectsArray;

}
else {

return null; // Return nothing if no camera detected
}

}

36

function StartRecording(DeviceID, Timestamp, StorageLocation) {
let Duration = Timestamp - Duration;
try {

StartCameraRecording(DeviceID, Duration, StorageLocation);
}
catch (error) {

error.log(error);
return false;

}
// If no error, return true
return true;

}

function EndRecording(DeviceID) {
try {

SendCameraRecordingInterrupt();
}
catch (error) {

error.log(error);
return false;

}
// If no error, return true
return true;

}

4.2.3. General Validation

The project requires the use of GigE cameras which is not supported by the Jetson by default. A
GigE camera uses the Gigabit Ethernet connection to stream video data and receives power.
Since Jetson does not support Power over Ethernet, a separate block is created to power the
camera.

Since there is no driver nor library available natively by Jetson, a third-party Linux library known
as Aravis [1] will be used. However, the library is licensed under GNU Lesser General Public
License v2.1 and to avoid licensing issues, under Condition 5 and Condition 6 of the GNU
Lesser General Public License v2.1 any code that uses the library but not including the library
called "work that uses the Library" is exempted from the license requirements. So this block will
not be including the library and the library will have to be downloaded separately from this code.

37

This block will be created with the C++ programming language which will work with both the
APE and the Library. The function will simply be in a header file to be called by the APE, no
sockets required.

The library is recommended by Nvidia staff and has been widely used by the Linux community,
being the only GigE library, this is the only library that we can use at this time besides the SDK
that our project partner might be able to provide. There are many reasons to believe that this
library can meet our use case:

1. GigE standard is universal, meaning there is no specific library to use for different GigE
cameras, if one GigE camera works, others will work too.

2. This library has been proven to work with the company that makes the same cameras
that we are going to use.

3. Jetson comes with all the Linux systems that Ubuntu OS comes with and this library
supports these systems including GStreamer that we are using for our USB cameras

4. This library has been used by a camera company to support Nvidia Tegra systems which
powers our Jetson AGX Xavier [2]

The block will store the streamed data to the local eMMC of the Jetson which allows high speed
read/write. This will prevent bandwidth bottleneck at the SSD and act as a buffer as the eMMC
has a higher bandwidth than the SSD can provide.

4.2.4. Interface Validation

otsd_gg_cmr_cd_comm : Input

Outside to GigE Camera communication, this is the GigE wired communication to the code
block from the camera.

Interface
Property

Why is this interface this
value?

Why do you know that your design
details for this block above meet or

exceed each property?

Other: Cameras
can be moved
one foot in each
direction without
a disconnection

Since the GigE camera will be
mounted outside of our
system, we will need to allow
the user to position the
camera according to their
preference.

Our design uses an Ethernet port and
does not require the camera to be installed
on the system. This will allow the user to
use an Ethernet cable of any length and
mount the camera wherever they see fit.

38

Other: Can
handle 1 or 2
GigE cameras
with the same
level of
functionality

Our project partner requires
us to be able to provide a
platform that can be plugged
in and go without any setup
and support an undisclosed
amount of cameras.

Our system do not limit the number of
cameras that can be connected and there
is nowhere on our block that set a limit on
how many connections can be made. The
block will simply look for the number of
cameras on the system and attempt to
connect to them.

Protocol: GigE This is the protocol that the
camera will be using.

The library we chose has been proven to
work with GigE cameras and support the
Jetson platform, we will be calling
functions within the library to connect to
and obtained video streams from it. The
library has extensive documentation on
how to do that [3].

gg_cmr_cd_strg_data : Output

GigE Camera to Storage Block

Interface
Property

Why is this interface this
value?

Why do you know that your design details
for this block above meet or exceed each

property?

Datarate: Files
produced are
at least
15FPS

This is the FPS that our test
camera can produce.

From our current tests, the FPS stated by the
camera is usually the FPS we are getting for
the files. We can also set the FPS we are
obtaining should we need to as well.

Messages:
Files saved
will be in
5-minute
pieces of
video

This is to prevent file
corruption when the
recording is interrupted.

This same method has been used by dashcam
recorders to prevent file corruption. By saving
the recording in chunks, we can guarantee
that the chunk completed will not be corrupted.

Protocol: Data
will be saved
on the eMMC

This is Jetson’s local
storage.

Since this is the local storage, all files are
saved here by default without us needing to do
anything.

mstr_scrpt_gg_cmr_cd_data : Input

39

APE (Master Script) to GigE Camera

Interface
Property

Why is this interface this
value?

Why do you know that your design
details for this block above meet or

exceed each property?

Other: Ability to
return file path
for saved data

This is needed so the APE
can let the Storage block
know where the file is located.

The APE will be providing the location to
be saved to, this ensures the saved file
path is always known by the APE.

Other: Ability to
return the
number of
connected
devices with
unique identifier

The APE would need to know
the connected cameras in
order to alert the user if any
cameras were showing error
and start recording for specific
cameras.

The program will return an array of all
connected devices with their ID and their
status. By looking at the size of the array,
the APE can determine the number of
devices and the device status is included
with the array.

Protocol:
Function Call

The APE will be calling the
function of the GigE block so
that no IPC will be required.

The entire program is created in modular
C++ functions which is the same language
used by the APE and can be included
easily.

p_pwr_spply_gg_cmr_cd_dcpwr : Input

Power Block to GigE camera

Note: This block is the responsibility of the PoE block, no work on the GigE block is to work with
this. The GigE block will interface with the PoE block then the PoE block will deliver the data as
well as the power to the GigE camera.

Interface
Property

Why is this interface this
value?

Why do you know that your design
details for this block above meet or

exceed each property?

Inominal:
400mA

This is the current required by
the IEEE standards for PoE
devices, the minimum of such
is 350 mA and this is just a
good margin above the
minimum.

The camera would only need 4.8W to
operate, this will provide amply.

40

Ipeak: 550mA This is the anticipated extra
power needed for the
camera.

This is the maximum current we will allow
the camera to have, given that the camera
only needs 4.8 W. It is also right below the
600 mA maximum current allowed by a Type
2 PoE cable.

Vmax: 56V This is the maximum voltage
as stated by the IEEE
standards for PoE devices.

This meets the maximum voltage allowed for
the GigE camera.

Vmin: 48V This is the minimum voltage
as stated by the IEEE
standards for PoE devices.

This meets the minimum voltage allowed for
the GigE camera.

4.2.5. Verification Process

1. Plug two GigE Camera to system
2. Call connect function to verify cameras are detected and able to connect to
3. Call record function to verify recording can be done
4. Call interrupt function to stop recording
5. Open the recorded video to ensure it can be played.

4.2.6. References and File Link

4.2.6.1. References

[1] Aravis, https://github.com/AravisProject/aravis

[2] The Imaging Source USB and GigE Linux package,
https://www.theimagingsource.com/products/software/linux/software-for-linux/

[3] Aravis Documentation, https://aravisproject.github.io/aravis/

4.2.7. Revision Table

Name Time Description

Anthony Kung 2/4/2022 - Removed FPGA Logic Block Validation
- Created GigE Camera Block Validation

Anthony Kung 1/5/2022 Created FPGA Logic Block Validation

41

mailto:kungc@oregonstate.edu
mailto:kungc@oregonstate.edu

4.3. USB Camera Block - Caden Friesen

4.3.1. Description
This block which will be primarily composed of code will take in data from a USB2 type C

Flir Boson320 thermal camera and record data to files. The files will be .tiff images recorded
with a speed of at least 10 frames per second. The block will keep a general naming scheme for
the files recorded to be able to call the storage block’s code efficiently and in an organized way.
All files submitted to the storage block will be under the designation of “Camera number 1” for
the purpose of file organization and naming.

4.3.2. Design

Figure 1: Black Box Diagram of USB Camera Code Block

42

Figure 2: Camera Recording Flowchart

4.3.3. General Validation

43

The design above fills the needs of this project code wise thanks to the biggest resource
for this block: the Flir Boson320 Script[1]. This script runs this specific camera and is able to
record images at thirty frames per second and decode them into a viewable .tiff format. The
main challenge is simply writing a program to run this script and control it as well as being able
to interface with the storage block.

The largest concern right now is whether or not the NVIDIA Jetson will be able to take
pictures on the GigE cameras and the Boson320 at once all at at least 10 pictures per second.
According to the NVIDIA Jetson tutorials series this design is using a lot of knowledge from, the
NVIDIA Jetson Nano is used extensively in rapid image processing and machine learning[2].
Since the NVIDIA Jetson Nano has far lower capabilities compared to the NVIDIA Jetson AGX
Xavier being used the design should be fine. The design will use threads and forking to allow
multiple cameras from other blocks as well as multiple storage processes to occur at the same
time.

As a backup if we are unable to achieve the speeds desired then the option of long
videos will be looked into instead of rapid picture taking. This was the original plan but it was
decided against due to the unknown reliability of the drone’s power source. With the image
taking process the only time lost will be time resetting up the cameras. This would be especially
a challenge on this block as the Flir script is only able to take images.

One other thing to look into will be how long to record. One of our project partner’s
recommendations was to record for a set amount of time. If we could accurately record time we
could set this up although power failure could be a concern for this. Alternatively we could
record indefinitely, although this may cause issues with storing all of the data before a shutdown
occurs. This will be an important issue to consider when performing system integration.

44

4.3.3 Interface Validation
Table 4.3.1: Interface Property Validation Table

Interface Property Why is this interface this value? Why do you know that your design details for
this block

above meet or exceed each property?

Otsd_usb_cmr_cd_comm: Input

Other: Cameras can be
moved one foot each
direction without a
disconnect.

This was chosen because this is about how far we are
expecting cameras to be from the Jetson at a maximum for
the project partner’s implementation. Our project partner
will be making an enclosure and it is only expected to need
about a foot of wire for the cameras to be moved and
placed within.

The design is not a physical one, this is just a
testing of what wires we have bought to make
sure they are solid for the connection. If this does
not work the solution will be to simply get new
wires to connect cameras.

Other: Flir Boson320
camera will be connected
as the input device.

This camera was selected as it was one of the three
cameras provided by our project partner. Originally the
design would have been adaptable to more cameras, but
this type of thermal camera needed more special attention
so the scope was lowered.

The design above is made to work with
specifically this camera. It uses code provided by
Flir themselves to drive and actually take photos
on the camera.

Connection Protocol:
USB type C

This was chosen because the Flir Boson320 is a USB type
C camera and the NVIDIA Jetson AGX Xavier has two
available ports for it.

Since there are two open USB C ports on the
NVIDIA Jetson and no conversion will need to
happen between the camera and the Jetson, one
USB C wire will accomplish this easily.

45

Usb_cmr_cd_strg_data: Output

Datarate: At least 10
images will be saved per
second from one camera.

This value was chosen based on the project partner’s
goals. The project partner would like pictures taken of
video frames with a goal of 10 frames per second. To
achieve this we will need 10 pictures from each camera
per second.

The tutorials being followed from Flir on using their
recording code are able to run 30 frames per
second on the camera. We have also in testing
been able to record 30 frames per second using
this code. The main challenge will be writing code
that is fast enough to take full advantage of this
ability, especially when full system integration
happens.

Messages: Files saved
will be images with a
320x256 pixel resolution.

This resolution is a common size for thermal cameras and
is what the Boson320 should be producing.

The script provided by Flir has been shown in its
demo to provide photos at this resolution. After
running the script on the camera locally the photos
were the proper resolution as well.

Protocol: Data will be
saved on the eMMC.

This is the local data on the Jetson. The script we will use
to save images automatically save to the local memory.
We decided moving things to the SSD should be the
storage block’s job so this value was chosen to lighten the
load of the camera block.

Data stores to the eMMC using the Flir script by
default. This will not require any additional design
and is more of an interface for the storage block to
know about.

46

Mstr_scrpt_usb_cmr_cd_data: Output

Other: Ability to set
variable with camera
number (Boson320
Designated Camera 1)

This has been picked as a property because the storage
block and master script will need to know what camera
number is being used when they move files or call set up
procedures.

With threads this should be able to be
manipulated and used in other processes at the
same time. It will also simply be passed as a
variable to the storage block which is even simpler
and has already been tested on the built storage
block.

Other: Ability to call
storage function on the
filepath of the saved
image.

This has been chosen as a property because it is
important for the storage function to be able to find the
saved images to actually move them.

The Flir code always saves images to the same
file with a predictable naming scheme so the
design above will be able to pass that location to
the storage function.

Protocol: Script for
running the camera can
be called by a program
using a
system(“./[scriptname]”)
execution.

It is important that the Flir program can be executed from
other programs so that the modular design can be put
together.

It has been found through testing that this is
possible and easy to do. The Flir program can be
called to record indefinitely or a specific number of
frames.

47

4.3.5. Verification Process
1. Plug in Flir Boson320 Camera
2. Verify that the camera is plugged into a USB type C port connected to the NVIDIA

Jetson.
3. Move the camera one foot left to right, up and down, and forwards and backwards. Verify

that the blue light remains on at all times.
4. Run a program that calls the Boson320 script and the storage script for 1000 frames of

footage.
5. While running, view files initially appearing on the eMMC local memory before they get

moved.
6. Open directory with saved images on the solid state drive. Verify 1000 images are

present in Camera1 folder.
7. Check the timestamp of the initial photo and the last photo. Find the difference between

these and divide 1000 by this number to calculate the framerate.
8. Check that images are 320x256 pixels in their properties.
9. Show that code uses a System(“./BosonUSB [arguments]“) formatted call.

These nine steps will verify:
Otsd_usb_cmr_cd_comm: Uses Boson320, camera can be moved, USB type C
Usb_cmr_cd_strg_data: At least 10 images per sec per camera, Resolution
requirements, data on eMMC
Mstr_scrpt_usb_cmr_cd_data: Able to run storage function, able to set camera number
variable, runs Flir Boson Script

4.3.6. References and File Links

[1]A. Prieto-Moreno, “FLIR/BosonUSB: Tool to capture Boson USB video in linux,” GitHub.
[Online]. Available: https://github.com/FLIR/BosonUSB. [Accessed: 04-Mar-2022].

[2]D. Franklin, “Dusty-NV/Jetson-inference: Hello AI World Guide to deploying deep-learning
inference networks and deep vision primitives with TENSORRT and Nvidia Jetson.,”
GitHub. [Online]. Available: https://github.com/dusty-nv/jetson-inference/. [Accessed:
19-Feb-2022].

4.3.7. Revision Table

3/12/2022 Caden Friesen: Reformatted and moved all of validation document to
project document. Changed interface table to landscape orientation and
resized all parts.

48

3/4/2022 Caden Friesen: Changed interfaces, verification, switched code
flowchart, added more issues for consideration to 4.3, edited block
description

2/18/2022 Caden Friesen: Made rough draft of all sections

4.4. Jetson Storage Process

4.4.1. Description
The purpose of this block is to take video data recorded by the two camera blocks and

store it on a solid state drive attached to the NVIDIA Jetson AGX Xavier. It will be built in a way
where it can be called as a function with the parameters of a file path, camera number, and
timestamp. It will go to the file specified, move it over to the solid state drive’s memory from the
Jetson’s memory, and then rename the file to “CameraX[Timestamp]”.

The reason this block is needed is because the memory on the Jetson is only 32
Gigabytes which is not nearly enough for the 4k video footage we will be recording over an hour
of. The one terabyte solid state drive has plenty of room for storing all the footage we record.
The block will also have the ability to create sorting directories on the solid state drive if they
have been removed.

4.4.2. Design
Figure 1: Storage Block Black Box Diagram

49

Figure 2: The process of the code for the storage block. The process is straightforward other
than the need to branch if the storage directory is not present. This process will be called once

per file saved. This means it will be called multiple times at the end of every five minutes.

Pseudocode:
This pseudocode provides the names of the functions that will be used in this program. Links to
their databases will be included in the file links section. Sections that use strcat will be slightly
more involved to construct the proper string in the full coded version.

Int Storage(file *filename, int camnum, str timestamp){
Str camstring = “ssd/camera”; //holds the start to the directory file path

50

strcat(camstring,camnum); //creates the directory path with the camnum
if(exists(“ssd/camera1”) != true){ //will check to see if directory exists

mkdir(camstring); //creates directory if it does not exist
}
Boost library copy_file(filepath, camstring); //will copy file to SSD
strcat(camstring,timestamp); //will create the name for the moved file
rename(camstring,); //will rename file to “Camera_X_Date_Time”
remove(filename); //will remove file from Jetson
return 3; //signifies proper completion of the storage

}

4.4.3. General Validation
The black box diagram in Figure 1 shows the layout of the storage block in relation to the

rest of the system. It will have three inputs from other blocks in the system and one output. Two
of these inputs will come in the form of files from the USB and GigE camera blocks. These files
will be 5 minute pieces of video but the format of the files will be inconsequential to the storage
block. The files will be 30FPS video with definition of up to 4K meaning their maximum size will
be 1.75 Gigabytes each[1]. The system is being built to handle up to six cameras so the total
video data that will need to be transferred within 5 minutes is 10.5 Gigabytes at a maximum.
The system should be able to handle this as the write speed of the solid state drive attached is
3.2 Gigabytes/sec[2].

The third input interface is the master script to storage interface. The master script will
be calling the storage block as a function call. This will include parameters for the file path, the
camera number, and the time stamp. These parameters will be used to determine where the file
to be moved is and to set the name of the file after it is moved.

The final interface is an output to a solid state drive that will be considered external to
our block. This interface will require files to be moved to the solid state drive. It will also need
the ability to create directories for file sorting if they are not present.

The designed pseudocode above will work for moving the file which is the main concern
of the block complexity wise. The original design for this block included using rename() to move
the file but this function was not able to move files between storage devices. The copy_file()
function from the boost library was suggested for a task like this and I verified with test code that
it can cross storage devices[3]. This left a new task which was the removal of the file from the
Jetson after. The remove() function was chosen for this as it is a well documented C++ function
for this purpose. Rename() will be used after the file is moved to change the name of the video
file. The three parameters provided at the start of the function will be used throughout the whole
process to locate the original file and name directories and files on the solid state drive.

51

4.4.4 Interface Validation

Table 4.4.1: Interface Property Validation Table

Interface
Property

Why is this interface this value? Why do you know that your design details for this block
above meet or exceed each property?

usb_cmr_cr_strg_data: Input

Data Rate:
Files produced
are at least
30fps

Thirty frames per second was decided by the
USB camera block. This value was picked for
what the USB block could handle recording
with four cameras active using the NVIDIA
Jetson AGX Xavier. This will be explained in
more detail in the interface table for the USB
camera block.

The design above will work fine with this because the highest
resolution cameras we are expecting from our project partner are 4k
cameras. At 30FPS the five minute files produced will be 1.75
Gigabytes each if they use 4k cameras. The solid state drive this
program will be writing to has a write speed of 3.2 Gigabytes per
second. This allows the design above to write about 548 files in the 5
minutes before the storage system will be called for its next set of
files. The project is only being verified to work with 6 files at once so
this block will be well within range of working with this.

Messages:
Files saved will
be in 5 minute
pieces of video

This value will be controlled by the USB
camera block. It was chosen because if a
power failure or camera disconnection
occurs, the current video file being recorded
will be corrupted. Five minute video pieces
will allow for protections to large amounts of
data loss while only needing 20 files to
represent an hour of data.

This requirement goes with the property above. It sets the 5 minute
limit for this block to finish transferring all previous files. As stated
above the write speed for the solid state drive will be many times
more than enough for the expected six 5 minute files.

52

Protocol: Data
will be saved
on the eMMC

This was decided by the USB Camera block
to be the easiest space to store data to. The
eMMC is the local memory on the NVIDIA
Jetson. This will allow the USB Camera to
pick its own file path to save to.

This is the local memory on the NVIDIA Jetson. The design laid out
above will work with this because the boost library’s copy_file function
works across storage devices allowing it to copy from the eMMC
straight to the solid state drive.

53

gg_cmr_cd_strg_data: Input

Data Rate:
Files
produced are
at least 15fps

Fifteen frames per second was
decided by the GigE camera block.
This value was based on the hardware
we have available to test with. The
system should be able to go higher
than 15FPS and will be built to work at
30FPS but the cameras we have
access to will only run at 15FPS so
this is all we can verify.

The design above will work fine with this because the highest resolution
cameras we are expecting from our project partner are 4k cameras. At
15FPS the five minute files produced will be 0.825 Gigabytes each if they
use 4k cameras. The solid state drive this program will be writing to has a
write speed of 3.2 Gigabytes per second. This allows the design above to
write about 1096 files in the 5 minutes before the storage system will be
called for its next set of files. The project is only being verified to work
with 6 files at once so this block will be well within range of working with
this.

Messages:
Files saved
will be in 5
minute pieces
of video

This value will be controlled by the
GigE camera block. It was chosen
because if a power failure or camera
disconnection occurs, the current
video file being recorded will be
corrupted. Five minute video pieces
will allow for protections to large
amounts of data loss while only
needing 12 files to represent an hour
of data.

This requirement goes with the property above. It sets the 5 minute limit
for this block to finish transferring all previous files. As stated above the
write speed for the solid state drive will be many times more than enough
for the expected six 5 minute files.

Protocol:
Data will be
saved on the
eMMC

This was decided by the GigE Camera
block to be the easiest space to store
data to. The eMMC is the local
memory on the NVIDIA Jetson. This
will allow the GigE Camera to pick its
own file path to save to.

This is the local memory on the NVIDIA Jetson. The design laid out
above will work with this because the boost library’s copy_file function
works across storage devices allowing it to copy from the eMMC straight
to the solid state drive.

54

55

mstr_scrpt_strg_data: Input/Output

Messages: File
path, camera
number
(integer),
timestamp
(string)

These three values will be passed to
the storage program. The file path
will be used to locate the file that
needs to be moved. The camera
number and timestamp will be used
to rename the files after they are
moved to “CameraX[Timestamp]”.

These three parameters will be all that is needed as input to the design
above. They will be used for finding the file that needs to be moved,
creating the title to rename the file to using the strcat function, finding the
directory to store the file in on the solid state drive, and removing the old
file off the NVIDIA Jetson. The pseudocode above does not need any
more external variables to function smoothly.

Other: Ability to
provide status
of if it is still in
the process of
storing data or
is waiting

This property was chosen so that
the master script can update the
E-Ink display with information on
whether a file is currently being
saved or not. This is important so
that the user does not disconnect
the device while a video file is being
transferred.

The master script will set a variable to 2 whenever this function is called
indicating that storing is in progress. When this function finishes it will
return a 3 which will indicate that the storage process is finished.

Protocol:
Function Call

The protocol for linking these two
blocks will be a function call. The
master script will call upon the
storage block as a function with the
parameters being the information in
the messages property. This allows
us to make cohesive code but better
modularize the functions we want to
provide.

This code will work as a function call and a function call only since it
requires parameters to work when called. It will return a value at the end
as well to signify it has finished.

56

57

strg_otsd_data: Input

Datarate: Able to transfer
12 Gigabytes in under 5
minutes spread across 6
files

This amount of data was chosen because
5 minutes of 4k video data at 30 frames
per second is 1.75 Gigabytes. We are
testing with 6 cameras so if all 6 of them
were 4k this would be 10.5 Gigabytes of
data. Since the files come in 5 minute
chunks the storage device will need to
finish transferring all 6 files within that
time.

The system will be able to accomplish this since the
write rate of the solid state drive attached is 3.2
Gigabytes per second. This means that it will only take
around 4 seconds to execute all of the transfers. The
other lines of code contain no loops and due to the
small size of the code (likely around 20 lines) there will
be no issue with extra time on top of the 4 seconds.

Other: Able to detect if files
for storage are already
present on drive and create
them if they are not

The solid state drive will be formatted to
have some file directories created on it for
storing all video footage. If these file
directories are not present when called the
device will need to create them for full
functionality.

The design above will use the C++ function exists()
with a preset file path and using the camera number
parameter to verify if a directory is present or not.

Other: Data can be moved
to a USB using a monitor
and can be played back on
another computer without
corruption. Shutting the
device off while recording
or in storage mode will
result in one corrupted file.

This is an important thing to verify. Collins
will not want to open up the Jetson and
remove the solid state drive every time
they want to see the data. For this reason
it should be verified that data can be
removed onto a plugged in USB drive
without issue.

This must just be assumed. If the code properly
transfers to the solid state drive there is no reason that
this should not work. This is a great end cycle
verification test to see if the code is functioning as
intended.

58

59

4.4.5. Verification Process
Interfaces: usb_cmr_cr_strg_data, gg_cmr_cd_strg_data, mstr_scrpt_strg_data,
strg_otsd_data

1. Remove all files from the solid state drive.
2. Create a video file that is 30 frames per second and 5 minutes long. This file must be

stored on the Jetson’s native memory.
3. Use a C++ program to call the function of the storage program with the parameters set to

(filepath of video file, 1, Feb_3_22_12:00).
4. While this is running it should print “Currently storing data”. When it is finished it should

print “Finished storing”.
5. Verify that a directory called “Camera 1” has been added to the solid state drive.
6. Verify that the directory contains the video file renamed to

“Camera_1_Feb_3_22_12:00”.
7. Attach a USB to the NVIDIA Jetson.
8. Using an attached monitor screen, transfer the video file from the solid state drive to the

USB.
9. Plug the USB into a laptop computer and play the video file.
10. If the video plays as normal, the title is unchanged, and the properties still lists it as

30FPS then the following interface properties have been verified:
usb_cmr_cr_strg: 30FPS Video file, 5 minute videos, video stored on eMMC
gg_cmr_cr_strg: 15FPS Video file, 5 minute videos, video stored on eMMC
mstr_scrpt_strg_data: Program called with a function call, accepts file path timestamp
and camera number parameters, available status of saving process
strg_otsd_data: Data can be transferred to a USB and played normally, the device can
detect

Interfaces: strg_otsd_data
1. Create 6 files each of size 2 Gigabytes (these do not need to be video files).
2. Call the storage function for each file using the file path as the first parameter and 1 for

the second and third parameters. Start a timer from the beginning of execution.
3. Once the notification for the final file transfer is done, stop the timer.
4. If the timer reads less than 5 minutes the following interface is verified:

strg_otsd_data: 12 Gigabytes can be transferred in under 5 minutes

4.4.6. References and File Links

References 4.4.6.1

[1]S. Caldwell, “How much storage space does 4K video take up on your iphone 8 or 8 plus?,”
iMore, 14-Sep-2017. [Online]. Available:
https://www.imore.com/how-shoot-trim-edit-and-share-4k-video-iphone#:~:text=30%20se
conds%20of%204K%20at,up%203.5GB%20(1.7GB). [Accessed: 05-Feb-2022].

60

[2] “WD Green™ SN350 nvme™ SSD,” Western Digital. [Online]. Available:
https://www.westerndigital.com/products/internal-drives/wd-green-sn350-nvme-ssd#WDS2
40G2G0C. [Accessed: 05-Feb-2022].

[3]MariusMarius, Some programmer dude, syvexsyvex, and icabodicabod, “C++ how to move
files and copy them from one disk to different without the usage of winapi?,” Stack
Overflow, 01-Jan-1960. [Online]. Available:
https://stackoverflow.com/questions/9081311/c-how-to-move-files-and-copy-them-from-o
ne-disk-to-different-without-the-usage. [Accessed: 05-Feb-2022].

File Links 4.4.6.2

Copy_File() Reference:

https://www.boost.org/doc/libs/1_48_0/libs/filesystem/v3/doc/reference.html#copy_file

Remove() Reference:

https://www.cplusplus.com/reference/cstdio/remove/

Exists() Reference:

https://en.cppreference.com/w/cpp/filesystem/exists

Strcat() Reference:

https://www.cplusplus.com/reference/cstring/strcat/

Mkdir() Reference:

https://pubs.opengroup.org/onlinepubs/009695299/functions/mkdir.html

Rename() Reference:

https://www.cplusplus.com/reference/cstdio/rename/

4.4.7. Revision Table

3/12/2022 Caden Friesen: Reformatted and move into main project document.

1/21/2022 Caden Friesen: Project was rescoped. Whole document was restarted.
All sections written again with new block, interfaces, and verification
steps.

1/7/2022 Caden Friesen: Created document and made rough draft of all sections

61

https://www.boost.org/doc/libs/1_48_0/libs/filesystem/v3/doc/reference.html#copy_file

4.5. Jetson GPIO

4.5.1. Description
This block is called control. The control block is for getting the user input and then

signaling the Jetson. There will be one button for the user to turn on recording and another
button to turn it off. The other 2 buttons will be for general purpose. This block will get power
from the Jetson by using connectors. It will need to use the Jetson 3.3V pin.

4.5.2. Design

Figure 1: Circuit that connecting the button and the Jetson

4.5.3. General Validation

This design will match what the system needs. The block will be getting power from
Jetson by using the pins from Jetson. The block will be supplying the user signal to turn on or
turn off the program in the Jetson agx xavier. It will also be able to tell the user it is on or off. The
buttons are also hard to push, it is flat at the top, in order to press the button, the user has to
apply some force and push down into it, so it won’t be touched or pressed by accident and turn
the Jetson on and off. This met what the project partner needs for the user interface. The
buttons and the resistors needed for the systems are cheap and reasonable to purchase. The
parts are all available to purchase online easily on Amazon and other websites. The buttons are
also of a high quality. The size of the total block is not big so it fits what the project partner

62

wants. If at the end, the button broke or it does not send the signal to the Jetson, we can ask the
project partner and they will buy the buttons and the solutions.

4.5.4. Interface Validation
otsd_cntrl_usrin: input

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each
property?

Other: Buttons press down X
DISTANCE NEED TO
CHOOSE

In this example, this property
was base on the user
interface, it is important that
prevent the button pressing
too easy. Avoid some
unnecessary acident press.

● According the button
datasheet, it needs to
press down for some
distance in order to
activate

Other: Buttons have flat non
extruding top

In this example, we do not
want somethings that cause
accidentally pressed in the
button. Having a flat non
extruding top can reduce the
chance of accidentally press.

● The button shows that
there is nothing on the
top, we can see that is
flat non extruding top.

● In the amazon
website we can see it
is flat

Type: Four Push Buttons are
Present

In this example, this property
was chosen based on the
design we plan to use in the
control block.

● In the Amazon
website, it has 6
buttons in one
package

Table 1: Interface Property Validation for otsd_cntrl_usrin.
prmry_xctbl_cntrl_dcpwr: input

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each
property?

Inominal: 60mA This nominal current was
chosen based on the
expected current needs of the
system overall

For Nvidia Jetson Carrier
Board Specification[1]

● According to the data
sheet, the maximum
current is 1A, so the
normal current will be
around half of this

Ipeak: 70mA This peak current was For Nvidia Jetson Carrier

63

chosen based on the
expected current needs of the
system overall

Board Specification[1]
● According to the data

sheet, the maximum
current is 1A, we do
not want to be touch
around the maximum,
so lower the 1A into
0.9mA

Vmax: 3.35V In this example, this property
was chosen based on the
design we plan to use in the
control block.

For Nvidia Jetson Carrier
Board Specification[1]

● According to the data
sheet, the Voltage
output from the pin is
3.3V, so the Vmax
can be little bit higher
in reality

Vmin: 3.25V In this example, this property
was chosen based on the
design we plan to use in the
control block.

For Nvidia Jetson Carrier
Board Specification[1]

● According to the data
sheet, the Voltage
output from the pin is
3.3V, so the Vmin can
be little bit lower in
reality

Table 2: Interface Property Validation for mstr_scrpt_cntrl_dcpwr.
cntrl_prmry_xctbl_asig: output

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each
property?

Other: code that can read
button inputs through GPIO
pins

In this example, this property
is very important because
that can show whether the
connection is good or not,
also if the GPIO is able to
read or not

● The Jetson datasheet
[1]shows it support
the GPIO reading and
function

Other: 60-90 mA current
(Button Active)

Thisl current range was
chosen based on the
expected current needs of the
system overall

● According to the
circuit calculation, it
will be outputting the
current in the range

Vrange: 3-3.3 volts (Button In this example, this property ● According to the

64

Active) was chosen based on the
design we plan to use in the
control block.

circuit calculation, it
will be outputting the
voltage in the range

Table 3: Interface Property Validation for cntrl_mstr_scrpt_asig.

4.5.5. Verification Process
1. For the normal voltage measurement, put the positive in the input, and put the negative

end into the ground.
2. For the current requirements, disconnect the button and put the measure in series with

the button, and then measure the current with a multimeter.
3. For the maximum voltage and current requirement, we will send the maximum current

and voltage to see if the system can handle it.
4. Run the program, start pressing the button 1 and see if the Jetson receives the signal or

not. The screen will pop up a message that says which button is being pressed.
5. Do step 4 for button 2-4.
6. Measure the distance between the buttons and the top when we press down the buttons.

4.5.6. References and File Link
[1]“Jetson AGX Xavier - Arrow.” [Online]. Available:

https://static5.arrow.com/pdfs/2018/12/12/12/22/1/565659/nvda_/manual/jetson_agx_xav
ier_thermal_design_guide_v1.0.pdf. [Accessed: 08-Jan-2022].

1. Nvidia Jetson Data sheet
2. Button information from Amazon
3. Nvidia Jetson Carrier Board Specification

4.5.7. Revision Table

4/22/2022 Henry: edit the session

3/12/2022 Henry: edit the table

2/4/2022 Henry: final revision

2/3/2022 Henry: update the each session

2/2/2022 Henry: delete everything and change the
block

65

https://static5.arrow.com/pdfs/2018/12/12/12/22/1/565659/nvda_/manual/jetson_agx_xavier_thermal_design_guide_v1.0.pdf
https://www.amazon.com/DaierTek-Momentary-Waterproof-Pushbutton-Stainless/dp/B08R9P9DFC/ref=pd_di_sccai_5/144-5620457-8596152?pd_rd_w=FnUiR&pf_rd_p=c9443270-b914-4430-a90b-72e3e7e784e0&pf_rd_r=9CSPTHW416X0TEFDJW4S&pd_rd_r=4ab00330-37a7-49aa-a289-7f16175eca0b&pd_rd_wg=7EBZw&pd_rd_i=B08R9P9DFC&psc=1
https://static5.arrow.com/pdfs/2018/12/12/12/23/1/848262/nvda_/manual/jetson_xavier_developer_kit_carrier_board_specification.pdf

4.6. Jetson Power Supply

4.6.1. Description
This block is called power supply. The power supply block is for getting the power from

the plug outlet of the airplane and then powering the Jetson. The power from the airplane is
normally 28V DC. And My block is able to handle between 18V and 36V, it will convert into 48W,
12V and 5.5A to Jetson. The jetson will accept the power and only take the power that Jetson
needs.

4.6.2. Design

Figure: Verification and validation wiring diagram

4.6.3. General Validation
This design will match what the system needs. The block will be getting from the plug

outlet of the airplane and then powering the Jetson. The block will be supplying the power
needed for the main system. The parts are all available to purchase online easily in digikey. But
for this time, our project partner already bought all the stuff we need so we do not have to pay
anything for this block. The size of the total block is not big so it fit what the project partner
wants. The power supply of this board is small and only using one chip, no external resistance.
If at the end, somehow it does work, we can buy a maded power supply to power Jetson. But
the chance will be low because our project partner is already providing the board and the chip.

4.6.4. Interface Validation
otsd_pwr_spply_dcpwr: input

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each
property?

Inominal: 2.3A In this example, this property ● According the

66

was based on the information
provided from the project
partner.

V24C12T150BL
datasheet, [3] it is
able to handle this
normal current

Ipeak: 2.5A In this example, this property
was based on the information
provided from the project
partner.

● According the
V24C12T150BL
datasheet, [3] it is
able to handle this
peak current

Vmax: 28V In this example, this property
was based on the information
provided from the project
partner.

● According the
V24C12T150BL
datasheet, [3] it is
able to handle this
maximum voltage

Vmin: 26V In this example, this property
was based on the information
provided from the project
partner.

● According the
V24C12T150BL
datasheet, [3]it is able
to handle this
minimum voltage

Table 1: Interface Property Validation for otsd_pwr_spply_dcpwr.
pwr_spply_mstr_scrpt_dcpwr: output

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each
property?

Inominal: 5.5A This nominal current was
chosen based on the
expected current needs of the
system overall

● According the
V24C12T150BL
datasheet, [3] it is
able to output this
current 3.5A

Ipeak: 7.0A This peak current was
chosen based on the
expected current needs of the
system overall

● According the
V24C12T150BL
datasheet, [3] it is
able to output 4.0A

Vmax: 12V In this example, this property
was chosen based on the
design we plan to use in the
control block.

● According the
V24C12T150BL
datasheet, [3] it is
able to output this
voltage

67

Vmin: 11V In this example, this property
was chosen based on the
design we plan to use in the
control block.

● According the
V24C12T150BL
datasheet, [3] it is
able to output this
minimum voltage

Table 2: Interface Property Validation for pwr_spply_mstr_scrpt_dcpwr.

4.6.5. Verification Process
1. For the voltage, put a testing input voltage into 28 V.
2. Then use a multimeter to connect the ground and the output voltage to measure the

voltage in the output to test this requirement.
3. For the normal current output requirements. Put a load with 5.5A on the output of the

circuit and put a testing input voltage into 28V
4. Use a multimeter to connect the output of the circuit to measure the current to test this

requirement.
5. For the maximum voltage and current requirement, we will send the maximum current

and voltage to see if the system can handle it. We will count for 30 seconds to see if it is
working or not.

6. Check the multimeter if the voltage and current are correct then it is working. The output
power is going to be about the same as input power. Power is going to be current times
voltage.

4.6.6. References and File Link
[1]“Jetson AGX Xavier - Arrow.” [Online]. Available:

https://static5.arrow.com/pdfs/2018/12/12/12/22/1/565659/nvda_/manual/jetson_agx_xav
ier_thermal_design_guide_v1.0.pdf. [Accessed: 08-Jan-2022].

[2]“Micro DC-DC Converter Evaluation Board user guide.” [Online]. Available:
https://www.vicorpower.com/documents/user_guides/brick/UG_Micro_ElvBrd.pdf.
[Accessed: 19-Feb-2022].

[3]“Micro DC-DC Converter Evaluation Board user guide.” [Online]. Available:
https://www.vicorpower.com/documents/user_guides/brick/UG_Micro_ElvBrd.pdf.
[Accessed: 19-Feb-2022].

1. Nvidia Jetson Data sheet
2. V24C12T150BL datasheet
3. https://www.vicorpower.com/documents/datasheets/ds_24vin-maxi-family.pdf
4. https://eecs.oregonstate.edu/capstone/ece/student/reports/blackboxdiagram.php?project

id=675

68

https://static5.arrow.com/pdfs/2018/12/12/12/22/1/565659/nvda_/manual/jetson_agx_xavier_thermal_design_guide_v1.0.pdf
https://www.vicorpower.com/documents/datasheets/ds_24vin-maxi-family.pdf
https://www.vicorpower.com/documents/datasheets/ds_24vin-maxi-family.pdf
https://eecs.oregonstate.edu/capstone/ece/student/reports/blackboxdiagram.php?projectid=675
https://eecs.oregonstate.edu/capstone/ece/student/reports/blackboxdiagram.php?projectid=675

5. https://eecs.oregonstate.edu/capstone/ece/student/reports/interfacetablewithcomments.
php?projectid=675

4.6.7. Revision Table

4/22/2022 Henry: update the section

3/12/2022 Henry: edit the block interface

3/4/2022 Henry: Revision on block interface

3/3/2022 Henry:Revision on each section

2/18/2022 Henry: revision

2/13/2022 Henry: update the each session

2/8/2022 Henry: delete everything and change the
block

5. System Verification Evidence

5.1. Universal Constraints

5.1.1. The system may not include a breadboard

The only physical pieces of our design are the power supply and user input blocks.
Neither of these is using a breadboard as the user input block is on a student-made PCB (figure
5.1.1) and the power supply is on a premade PCB board (figure 5.1.2). Images of the PCB
design and built power supply have been attached below.

5.1.2. The final system must contain both of the following: a student-designed PCB and
a custom Android/PC/Cloud application

Since the majority of the project is code-based, there are few physical parts that require
a physical connection or additional physical components. Among the physical components, the
power supply comes with a premade PCB for its design. Our one remaining physical block, the
user input block, has included a student-designed PCB. This is less than 50% of the system but
all the PCB that could reasonably be made for the system.

69

https://eecs.oregonstate.edu/capstone/ece/student/reports/interfacetablewithcomments.php?projectid=675
https://eecs.oregonstate.edu/capstone/ece/student/reports/interfacetablewithcomments.php?projectid=675

Our system includes a linux based application as the majority of the project. Nearly 90%
of this project is coding which meets this requirement.

Figure 5.1.1: PCB layout

5.1.3. If an enclosure is present, the contents must be ruggedly enclosed/mounted as
evaluated by the course instructor

The enclosure is provided by the project partner and our team has no involvement in designing,
building, mounting, or installing the project hardware onto the enclosure itself, nor have we been
provided information other than a weight limit. Therefore, this universal constraint does not
apply to our project.

70

5.1.4. If present, all wire connections to PCBs and going through an enclosure (entering
or leaving) must use connectors

All the connections will be able to use connectors in the system. Between the button and
the PCB and the Jetson, we will be using connectors to connect the power in and signal out
from the buttons. The buttons and pieces will all be connected to the PCB design in figure 5.1.1.
Attached below is an image of the whole system.

Figure 5.1.3 The entire system connected as one cohesive device

5.1.5. All power supplies in the system must be at least 65% efficient

Figure 5.1.2 shows the power supply taking in 18.1 Volts at 3.8 Amperes and outputting
11.26 Volts at 4.99 Amperes. This results in 68.78 Watts in (18.1 * 3.8) and 56.2 Watts out (4.99
* 11.26). This is an efficiency of 81.7% (56.2/68.78 * 100). This is above the 65% minimum
efficiency.

71

Figure 5.1.2: The power supply displaying efficiency

5.1.6. The system may be no more than 50% built from purchased modules

As far as blocks go, our user input block, USB and GigE camera blocks, storage block,
and primary executable blocks are all designed and built by our team. The camera code blocks
use some software provided by FLIR but still build programs around them. Our only prebuilt
block is the power supply along with the NVIDIA Jetson AGX Xavier which is the core of our
system. This means 5 of 6 blocks are designed and built by us which is more than 50%.

72

5.2. Flir USB Camera

5.2.1. Requirement

The Jetson will capture video frames from the Boson320 camera and the video frames will be
stored as image files at a 10FPS minimum in 320x256 pixel images.

5.2.2. Testing Processes

1. Connect the Boson320 via USB C port on the Jetson along with the Imperx C3210 via
the PoE switch.

2. Run APE service.
3. Set the recording time to 1 minute.
4. View data recorded on the Solid State Drive and verify there are at least 600 photos.
5. Check that saved images are 320x256 pixel images.

5.2.3. Testing Evidence

This video follows the steps outlined in 5.2.2 to verify that the Boson320 camera can record
images that are the right size as well as at a rate faster than 10 frames per second.

Video From 3/13/2022:

https://www.youtube.com/watch?v=yzQLvrwamJk&ab_channel=Blokdude3456

https://youtu.be/BJ4kXFkERmM

5.3. Imperx GigE Camera

5.3.1. Requirement

The Jetson will capture image data from the Imperx camera and store it as an Imperx RAW
image file with the original resolution of 3216 x 2208 pixels at a minimum of 10 images per
second.

5.3.2. Testing Processes

1. Connect the camera to the PoE switch
2. Connect the NVIDIA Jetson to the PoE switch
3. Power up the Jetson board
4. Run APE service
5. Set recording time to 1 minute.

73

https://www.youtube.com/watch?v=yzQLvrwamJk&ab_channel=Blokdude3456
https://youtu.be/BJ4kXFkERmM

6. View data recorded on the Solid State Drive and verify there are at least 600 photos.
7. Check that saved images are 3216x2208 pixel images.

5.3.3. Testing Evidence

https://youtu.be/m1C5xK0qEK0

5.4. Saved Settings

5.4.1 Requirement

The Jetson will store the previously set recording time and preset delay time in a file. These
should be able to be set with the user interface.

5.4.2 Testing Processes

1. Powering on the Jetson
2. Configure the recording time and preset delay time to 60 seconds
3. Verify the configuration has been written to the file by checking the .txt files for previous

record and previous delay.
4. Power down the Jetson
5. Powering up the Jetson again
6. Verify the configuration is correctly restored when pressing the set to the previous button

on the user interface.

5.3.3. Testing Evidence

This video follows the steps above to demonstrate that settings are not only saved for the
preferred settings button but are also saved between power-ups of the Jetson.

Recorded 5/4/22:

https://youtu.be/C8T-9eeo2Ts

5.5. Jetson Power Supply

5.5.1. Requirement

The power supply block will take an input voltage of 28V with a 5V margin to produce a steady
12V supply for the Jetson.

74

https://youtu.be/m1C5xK0qEK0
https://youtu.be/C8T-9eeo2Ts

5.5.2. Testing Processes.

1. Connect the DC voltage source to the input terminals of the Power Supply Unit.
2. Connect the PSU output wire to the NVIDIA Jetson.
3. Verify that Jetson runs the program and starts up with no noticeable abnormalities. This

means being able to run the program and record the files.
4. Monitor the operating input voltage to see if the device is able to handle the variety of

input voltage. The expected input from the aircraft is 28V DC. Vary the input voltage from
26V to 30V.

5.5.3. Testing Evidence

This video shows the power supply powering the Jetson as well as it receiving variable drone
power and still functioning as intended.

Video from 5/4/22:

https://youtu.be/ZamSdmo7M4o

5.6. User Interface

5.6.1. Requirement

The system will allow 9 out of 10 users to perform the following functions: Manually
starting/stopping recording, setting a preset delay for recording, setting a preset recording
length, and resetting to previous settings.

5.6.2. Testing Processes

There will be four buttons: A menu button for switching between options, a select button for
performing actions, a plus button for adding, and a minus button for subtracting. This
step-by-step guide will not explain how to perform each action by each button press but will only
use the buttons above.

This process will need to verify that users can use it. A small manual for the functions of buttons
will be made and given to participants along with the device.

1. Attach the Boson320 and Imperx camera to the NVIDIA Jetson with the USB C port and
PoE switch.

2. Set the delay time to 5 minutes and the record time to 10 seconds.

75

https://youtu.be/ZamSdmo7M4o

3. Run the Primary Executable allowing the cameras to record.
4. Hand the participant a list of small tasks they will pass if they are able to accomplish all

of these tasks without help.
a. Stop the recording
b. Change the delay to 1 minute.
c. Change the recording time to 2 minutes.
d. Resume the recording.
e. At any point after this return the system to previous settings.

6. This will be verified if 9/10 people can accomplish these tasks.

5.6.3. Testing Evidence

These videos demonstrate the user interface working and a test subject receiving the user guide
and testing it out. The user is able to follow the directions and demonstrate all its functionality of
it.

Videos from 5/4/22:

https://youtu.be/_CDQ8AFpG5I

https://youtu.be/EWjSMp0xCkY

5.7. Storage Organization

5.7.1. Requirement

The system will output image files to an SSD that will be organized by camera number.

5.7.2. Testing Processes

1. Attach the Boson320 and Imperx camera to the NVIDIA Jetson with the USB C port and
PoE switch.

2. Run the Primary Executable allowing the cameras to record.
3. Stop the recording after 10 or more seconds
4. Check that files are stored in the folder on the solid state drive named “CameraX” where

X is the number assigned in the primary executable included in the title (this number
should be verified during a verification test).

5. Check that both cameras are stored properly in different folders.
6. Check that none of the files are still stored on the local memory.
7. Run this test one more time with this variation:

76

https://youtu.be/_CDQ8AFpG5I
https://youtu.be/EWjSMp0xCkY

a. Run the test with the folder for the camera deleted and verify this folder is created
on running.

5.7.3. Testing Evidence

This video follows all of the steps outlined in 5.7.2 to show files being moved from local memory
to a solid-state drive that is organized by camera number.

Video From 3/13/2022:

https://www.youtube.com/watch?v=1YLHA3McY5U

This video repeats the experiment but with all of the systems integrated as one.

Video From 5/4/22:

https://youtu.be/eIOhud2yhPo

5.8. File timing

5.8.1. Requirement

The system will output images with the timestamps on the file name.

5.8.2. Testing Processes

1. Attach the Boson320 and Imperx camera to the NVIDIA Jetson with the USB C port and
PoE switch.

2. Run the Primary Executable to record the cameras.
3. Stop the recording after one minute.
4. Check for the files stored in the Camera1 folder on the solid-state drive.
5. Verify that the files have a range of timestamps one minute long across all their names.

5.8.3. Testing Evidence

This video demonstrates both timestamps and folder organization in the solid-state drive.

Video recorded 5/4/22:

https://youtu.be/eIOhud2yhPo

77

https://www.youtube.com/watch?v=1YLHA3McY5U
https://youtu.be/eIOhud2yhPo
https://youtu.be/eIOhud2yhPo

5.9. Autonomous Operation

5.9.1. Requirement

The system will operate without user intervention when power is applied. If a preset delay or
recording length was chosen this feature will continue from where it left off 10 out of 10 times.

5.9.2. Testing Processes

1. Attach the Boson320 to the NVIDIA Jetson with the USB C port.
2. Run the primary executable to record the camera.
3. Disconnect power from the NVIDIA Jetson.
4. Reconnect power to the NVIDIA Jetson.
5. Check that recording has begun again by viewing if new files are appearing in the

Camera1 folder.
6. Stop recording and create a preset delay of 1 minute, and a recording length of 1

minute.
7. Restart the system with this preset delay applied.
8. View on the display that the delay counts down from 60 to 30 seconds.
9. Repeat steps 3 and 4.
10. View on the display that the delay continues counting down from 30 seconds before it

begins recording. This can be verified in step 5.
11. View on the display that the preset recording length counts down from 60 to 30 seconds.
12. Repeat steps 3 and 4.
13. Verify that once the system resumes recording it records for only 30 more seconds.

5.9.3. Testing Evidence

This video demonstrates what we have currently working for this requirement. This requirement
still needs fixes to its memory storage and automatic booting of the code.

Video recorded 5/6/22:

https://youtu.be/COjQmnUcZPo

78

https://youtu.be/COjQmnUcZPo

5.10. References and File Link

5.10.1. References

5.10.2. File Links

5.11. Revision Table

4/22/2022 Caden: Adjusted grammar and updated steps to most testing sections to fit
spring.

4/22/2022 Henry: update 5.5

3/13/2022 Adjusted verification steps for 2 and 7. Improved and added to all global
requirements including pictures. Added evidence for 2 and 7. Added 5.9
Recorded and added videos for 2 and 7

3/12/2022 Henry: Edit the section 5

3/6/2022 Caden: Wrote starting evidence pieces

3/6/2022 Anthony Kung
- Created Section 5

6. Project Closing

6.1. Future Recommendations

6.1.1. Technical Recommendations

For the project PCB, a 40-pin header is recommended for quick and easy connection between
the Jetson AGX Xavier and the peripherals. Labeling is also recommended on the PCB to
provide easier installation. A similar and better PCB design from the Doorgy Project [6.4.2.1]
could serve as a reference design for a better PCB design, which includes a 40-pin header, and
individually labeled peripheral connections.

The use of Waveshare e-Paper display is significantly more complex on the Jetson platform,
since the library did not use the Jetson SPI library and create the SPI signals themselves, the
refresh rate of the e-Paper display is significantly impaired. Some recommendations include
creating a new e-Paper library using the Jetson native SPI support, using better hardware such

79

mailto:kungc@oregonstate.edu

as Raspberry Pi Single-Board Computer, or using a different display option such as an LCD
display or even a mini HDMI display with a user interface built with Electron.

One major shortcoming of the project was getting the project to run the code effectively on boot
up. We ran into issues with both our IPC not connecting and our solid-state drive not mounting
immediately on boot. If there was one major spot, to begin with improving this project it would be
here. Research into how to make sure a solid-state drive mounts without human interaction
smoothly as well as verifying that IPC will connect. Over the process, it is possible that we had
corrupted some pieces of our NVIDIA Jetson so the ability to start from scratch on this project
could be a benefit to this. We made an assumption that things would work the same way
running on boot as they did running manually and that was a major oversight in our project. A
tutorial linked in 6.4.2.2 may be a good place to start better understanding IPC for this project.

If a team were to take this project and work another year on it, one major improvement would be
to make it more adaptable to other cameras. We learned throughout the project that
implementing a system that was adaptable to what cameras would be connected was not
feasible. If we had more time, however, making smoother code that is more compartmentalized
and allows for easier addition of cameras would be very beneficial. Allowing users to write code
for a new camera and just call functions from the project, followed by just adding a simple call to
their new camera in the primary executable would make this project much more reusable and
useful overall. Researching and planning out in advance how to better modularize the codebase
would be the best place to tackle this. A guide for this has been linked in 6.4.2.3 below.

6.1.2. Global Impact Recommendations

To help mitigate the issue of large computer chip companies sourcing work from
underdeveloped countries and treating their workers very poorly we would recommend a future
team focus on responsibly sourcing parts for this project. We think it is important to only support
companies that care about ethical work situations and value their employees.

Our second recommendation is to make sure the project meets the IEEE 1156.1 standard [1] on
microcomputers, and the MIL-STD-810 military standard [2] which includes test methods for
various scenarios of potential risks. It is crucial that this device does not cause issues for a
plane or drone especially when people are involved. Making sure the device meets proper
safety standards is just as important as making sure it works functionally. We recommend
following these specifications extremely closely to mitigate these risks.

80

6.1.3. Teamwork Recommendations

Over the course of the term our team sometimes struggled with staying organized and getting
together to get things done. We would recommend two major things for future groups. Firstly
semester 1 should be used to better unify your team. Doing assignments in person will not only
result in assignments being done faster but will actually allow your team to bond and get to
know each other in the process[3]. This will be key to better teamwork later. Our team did not
take advantage of semester 1 well enough and it resulted in our team not having built chemistry
by semester 2.

A second recommendation that goes along with the first is to make an excel sheet with the
times everyone is regularly available. There will always be other homework so seeing the times
people don’t have courses and planning meetings in advance is key[4]. This spreadsheet will
allow a leader to pick a time and declare a meeting rather than a team bouncing back and forth
about what times people are available and never choosing. Once our team implemented this in
semester 2 group meetings were far more regular and got a lot more work done.

One final bonus piece of advice to throw in is something Don told us at the start of semester two
when planning other meetings. He said that having homework should not be an excuse to not
get this work done because this is also homework but your teammates are also relying on you
for it. This should take priority to get done. Once that was in perspective it was much easier to
put this project first.

6.2. Project Artifact Summary with Links

The ARGH project includes a project showcase website highlighting the key features of the
project as well as the project video updates throughout the development process.

https://argh.anth.dev

This link leads to our GitHub with all of the code we used in this assignment as well as some
basic guides for setting it up on a device. The vast majority of our work is contained here.

https://github.com/Anthonykung/ARGH

This link leads to a user guide for the button interface of our system. It teaches what
functionalities are available and which buttons to use to do them.

https://docs.google.com/document/d/18Z7XfFBTm8etnC6VymKIWAIs4GEBXvRME5v65
HdPamI/edit?usp=sharing

81

https://argh.anth.dev
https://github.com/Anthonykung/ARGH
https://docs.google.com/document/d/18Z7XfFBTm8etnC6VymKIWAIs4GEBXvRME5v65HdPamI/edit?usp=sharing
https://docs.google.com/document/d/18Z7XfFBTm8etnC6VymKIWAIs4GEBXvRME5v65HdPamI/edit?usp=sharing

6.3. Presentation Materials

The ARGH project includes a React.js and Markdown powered MDX Slide along with a project
showcase poster.

Project Poster: https://anthos.link/docs/ARGH_Project_Poster.pdf

Project Slide Deck: https://github.com/Anthonykung/ARGH/tree/main/docs

6.4. References & File Links

6.4.1. References

[1] “IEEE 1156.1-1993 - IEEE standard microcomputer environmental specifications for
computer modules,” IEEE SA - The IEEE Standards Association - Home, 17-Jun-1993.
[Online]. Available: https://standards.ieee.org/standard/1156_1-1993.html. [Accessed:
28-Oct-2021].

[2] “MIL-STD-810,” Wikipedia, 18-Oct-2021. [Online]. Available:
https://en.wikipedia.org/wiki/MIL-STD-810. [Accessed: 28-Oct-2021].

[3] The Mind Tools Content Team By the Mind Tools Content Team, “Working in a virtual team:
Using technology to communicate and collaborate,” Career Development From
MindTools.com. [Online]. Available:
https://www.mindtools.com/pages/article/working-virtual-team.htm. [Accessed:
06-May-2022].

[4] M. Woodward, “Here is a step-by-step how-to plan to set up effective meetings,” The
Balance Small Business, 21-Jan-2019. [Online]. Available:
https://www.thebalancesmb.com/simple-steps-for-planning-meetings-4105855.
[Accessed: 06-May-2022].

6.4.2. File Links

[6.4.2.1] Doorgy Project PCB: https://github.com/Anthonykung/Doorgy/tree/main/docs/pcb

[6.4.2.2] “Inter Process Communication Tutorial,” Inter Process Communication tutorial. [Online].
Available: https://www.tutorialspoint.com/inter_process_communication/index.htm. [Accessed:
06-May-2022].

82

https://anthos.link/docs/ARGH_Project_Poster.pdf
https://github.com/Anthonykung/ARGH/tree/main/docs
https://standards.ieee.org/standard/1156_1-1993.html
https://en.wikipedia.org/wiki/MIL-STD-810
https://www.mindtools.com/pages/article/working-virtual-team.htm
https://www.thebalancesmb.com/simple-steps-for-planning-meetings-4105855
https://github.com/Anthonykung/Doorgy/tree/main/docs/pcb
https://www.tutorialspoint.com/inter_process_communication/index.htm

[6.4.2.3] “Single page apps in depth,” 2. Maintainability depends on modularity: Stop using
namespaces! [Online]. Available: http://singlepageappbook.com/maintainability1.html.
[Accessed: 06-May-2022].

6.5. Revision Table

5/6/2022 Henry: edit section 6.1.2 and other sections

5/6/2022 Anthony Kung
- Added Section 6.1.1
- Added Project Website Section 6.2
- Added Section 6.3
- Added Section 6.4.2
- Added Section 6.5

83

mailto:kungc@oregonstate.edu
http://singlepageappbook.com/maintainability1.html

A. Appendix

Intentionally left black for the time being.

84

